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Abstract: Water electrolysis is one of the most promising methods to 

produce H2 and O2 as high potential fuels. Comparing the two half-

reactions, the Oxygen Evolution Reaction (OER) is the more difficult 

to be optimized and still relies on expensive noble-metal based 

catalysts such as Ru or Ir. In this paper, we prepared nanoparticles of 

HfN and Hf2ON2 and tested them for the OER for the first time. The 

HfN sample, in particular, showed the highest activity, requiring an 

overpotential of only 358 mV at 10 mA/cm2 in Fe-free electrolyte and, 

above all, exhibiting long-term stability. This result places this system 

amongst one of the most promising catalysts for OER tested to date, 

in term of sustainability, activity and stability. The prepared 

nanoparticles are small (less than 15 nm in diameter), well-defined in 

shape and crystalline, and were characterised before and after 

electrochemical testing also via electron microscopy (EM), Powder X-

rays diffraction (PXRD) and X-rays photoelectron-spectroscopy (XPS). 

Introduction 

Energy production is fundamental to modern society, which relies 

on it to survive and develop. Current energy production almost 

entirely relies on burning fossil fuels, which are no longer a 

sustainable solution. Among reliable alternatives, the production 

of high potential combustibles (such as H2) via electrolysis of 

water (Scheme 1) is one of the most promising methods. 

2H+
(aq) + 2e- → H2(g) at the cathode, E0=0 V,  

HER (Hydrogen Evolution Reaction) 

 

H2O(l) → ½ O2(g) + 2H+
(aq) + 2e- at the anode, E0=1.23 V, 

OER (Oxygen Evolution Reaction)  

 

ΔGH = 273.1 KJ/mol (1.23 V) in standard condition 

Scheme 1. The two half-reactions for the water-splitting: H2 is produced at the 

cathode (HER) and O2 at the anode (OER)[1].To ensure an efficient 

conversion, the process of water splitting requires the use of 

suitable catalysts, which are, to date, mainly based on noble 

metals (Pt for HER and IrOx or RuOx for OER[1,2]), because they 

offer a lower overpotential (η) compared to other materials and 

fast kinetics for driving the reaction. While Pt shows ideal activity 

for HER (close to zero overpotential in acidic conditions), there 

are no other catalysts that can catalyze OER at such low 

overpotentials. For example, even the most commonly employed 

RuOx and IrOx catalysts perform at overpotentials of a few 

hundred millivolts[3]. In this respect, OER is more difficult to be 

optimized compared with HER and despite extensive research, 

the overpotentials required to sustainably drive the OER are still 

very high. This has wide reaching implications considering that 

OER finds broader applications, e.g. in fuel cells and batteries[4]. 

One fundamental step to be considered for a sustainable and 

large-scale production of hydrogen from water splitting, besides 

optimising catalytic activity, is to explore readily available and 

cost-effective catalysts. Stability is also a key prerequisite and the 

ideal catalyst must be resistant under the reaction conditions, i.e. 

it should not undergo passivation or deactivation, and must 

possess high surface area, conductivity and homogeneity, to 

ensure an efficient electron transport. 

With this aim, several classes of materials based on non-noble 

metals have been explored, including their alloys (e.g. Ni-Mo)[5,6], 

oxides and chalcogenides[1,7], and in very few cases metal 

carbides (MC) and nitrides (MN) [1,7–9]. Among these compounds, 

MN possesses the highest electronic conductivity and stability 

under harsh conditions[1]. MN, as well as MC, are part of the family 

of metallic ceramics and possess high thermal and chemical 

resistance, good mechanical properties and high melting point, 

alongside metallic behaviour (e.g. good electronic conductivity) 

and obviously catalytic activity. The catalytic activity of some 

metallic ceramics is similar to that of some noble metals[10] and 

some of them were found to be active not only for HER (e.g. 

Mo2C[11], Mo2N[12] and CoxN[13]) or OER (e.g. NixN and FexN[13–15], 

CoxN[1] and Mn3N2
[16]), but also for the reverse electrochemical 

processes such as oxygen reduction reaction (ORR), the cathode 

reaction in the fuel cells[17–19]). In some cases, however, the 

material is unstable or the syntheses requires toxic ammonia flow, 

hindering the production on a large scale. Among metal nitrides, 

Hf-based nitrides are one of the less explored in catalysis and 

electrocatalysis. So far, only HfON has been tested with promising 

results towards ORR[19,20] and HER[21], but not in OER. To the best 

of our knowledge, no studies on hafnium nitride (HfN) have been 

reported. This is surprising considering that HfN is also a metallic 

ceramic with high melting point (>3300°C) and low electrical 

resistivity (27 μΩ*cm)[22]. Furthermore, it is expected to have 

chemical and physical properties similar to Zr-based materials, 

which was recently addressed as a high performing electro-

catalyst from theoretical studies[23]. In addition, Hf is readily 

available and more abundant than Ru and Ir. For example, the 

price of Hf in 2010 was $563 per kilogram[20], while Ru was 

8500$ per kilogram and Ir is 47500$ per kilogram[24]. One of the 
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reasons behind the lack of studies for HfN might be related to the 

synthetic challenge related to its nanoparticles preparation. In fact, 

only works on HfN films (using CVD and ALD) are known[25] and 

no reports have been published on the formation of nanoparticles 

or nanofibers. Although useful for film preparation, neither ALD 

nor CVD allows large-scale productions. In this contribution, we 

present a sustainable synthesis of both HfN and Hf2ON2 

nanoparticles and related application for the OER. The sol-gel 

based procedure used (known as Urea-Glass-Route, UGR)[26,27] 

allows the easy preparation of both the metal oxynitride (Hf2ON2) 

and the pure nitride phase (HfN) in form of well-defined and small 

particles (15 and 10 nm for Hf2ON2 and HfN, respectively), with 

relatively high surface area (>40 m2/g). The change in 

composition is accompanied by a reduction of particles size, while 

reaction conditions (such as temperature and metal/urea molar 

ratio, R) have a significant effect on the morphology of the final 

material. Electrochemical tests have shown significantly improved 

performance using HfN over Hf2ON2 and HfO2 with an 

overpotential of 391 mV at 10 mA/cm2 and a Tafel slope of 94 

mV/dec in Fe-free 1M NaOH electrolyte. Long-term 

chronopotentiometry tests (up to 24h) evidence good stability of 

the catalyst. These results place HfN amongst the best OER 

noble metal-free and iron contamination-free electro-catalysts 

tested so far. To the best of our knowledge, this is the first time 

that HfN and Hf2ON2 were prepared at the nanoscale and tested 

for OER. 

Results and Discussion 

Phase attribution on all prepared samples was ascertained by 

XRD analysis. Figure 1 shows the XRD patterns of samples 

prepared at different ratios and heat treatments. The pattern 

nicely matches that of expected Hf2ON2 for samples prepared 

with a urea/metal molar ratio R≤3, and HfN for samples 

prepared with ratios R>10. This difference in composition is also 

reflected by a difference in colour (as shown in the experimental 

part): light grey for the oxy-nitride phase and darker grey for the 

nitride.  

 
Figure 1. XRD patterns of samples prepared with different molar ratios (R=3, 

10 and 16) and treated at 900°C (left) and 1200°C (right), respectively. The 

reference pattern of Hf2ON2 (ICDD: 00-050-1171, red vertical lines) and HfN 

(ICDD: 03-065-5056, dashed black lines) are also reported for comparison. 

The possibility to address the synthesis to metal nitride over the 

metal oxynitride phase by changing R and/or reaction 

temperature is a peculiarity of the UGR and was also observed 

for other systems[28,29]. The reaction temperature not only affects 

the crystallinity of the final material but also the purity. For 

samples treated at T=900°C, traces of HfN can be observed in 

the Hf2ON2 phase, and vice versa, while a higher reaction 

temperature (T=1200°C) leads to pure HfN. The absence of the 

main graphitic peak from XRD pattern (expected around 26 

degrees[30]) confirms the amorphous nature of the residual carbon 

observed from elemental analysis (Table 1).  In all cases this was 

not found to be detrimental for the electrochemical performance 

of the active Hf-based material. The results of elemental analysis 

reported in table 1 also show a slight nitrogen deficiency in the 

HfN samples (wt %<6%), compared to the theoretical value 

(7.23%) while the C% could be due to the formation of amorphous 

carbon during the synthesis, as previously observed when using 

the UGR24. The crystallite size as obtained via Debye-Scherrer 

analysis shows smaller size for HfN nanoparticles and results are 

reported in Table 1.  

 
Table 1. Experimental details of some representative samples obtained by 

varying R and heating at different temperatures under nitrogen flow. Values of 

nominal diameter, as well as Elemental Analysis (EA) data and surface area are 

reported. 

 

 

Crystal structures of HfN, Hf2ON2 and HfO2 are reported in figure 

2 (HfN is cubic, with unit cell parameter of 4.5120 Å, Hf2ON2 has 

unit cell parameter of 10.0634 Å[31]).  

 

 

 

 

 

 

Name 

Main Phase 

(side 

product) 

Nominal 

diameter [nm] 
EA [wt %] 

Surface 

area 

[m2/g] by 

XRD[a] 

by 

TEM[b] 
N[c] C 

Hf R=3 
900°C 

Hf2ON2 46 
10-30 
(55) 

7.2 3.2 42 

Hf R=10 
900°C 

HfN (Hf2ON2) - 5-25 5.6 14.2 88 

Hf R=16 
900°C 

HfN 20 5-25 5.8 21.2 45 

Hf R=3 
1200°C 

Hf2ON2 69 13-42 5.7 3.8 37 

Hf R=10 
1200°C 

HfN (Hf2ON2) - 7-21 4.8 17.4 - 

Hf R=16 
1200°C 

HfN 25 5-15 4.6 26.0 44 

[a]Calculated on the main peak in XRD using Scherrer equation. [b]Histograms 

reported in the SI, values in bracket indicate that occasionally bigger particles 

were observed. [c] N% theoretical value in both Hf2ON2 and HfN is ~7%. 
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Figure 2. Crystal structures of HfN, Hf2ON2 and HfO2. Cif file from ref. 36 and 

structures plotted using VESTA37. 

To investigate the sample’s morphology, larger scale 

homogeneity and particle dimensions, SEM and TEM analysis 

were performed. SEM images of Hf2ON2 prepared with an initial 

ratio R=3 and treated at 900°C show clusters of uniform size and 

cube-like shape (Figure 3.A). The “edged” nature of the particles 

was also shown in some TEM images, where hexagonal shape 

nanoparticles are occasionally observed (highlighted in red in 

Figure 3.B). According to TEM, together with smaller 

nanoparticles (10-20 nm in diameter), clusters of bigger particles 

(50-60 nm) were also observed. TEM analysis confirmed the 

smaller size of the HfN nanoparticles over the Hf2ON2 ones 

(Figure 3.B-D and Figure SI.1) while SEM images of the same 

sample (Figure 3.C), display a needle-like shape, where 

nanoparticles seem to growth alongside a preferential orientation 

(2D structure).  

 

 

 

 

 

Figure 3. A) SEM and B) TEM images of sample R=3 at 900°C. C) SEM and D) 

TEM images of sample R=10 treated at 1200°C. 

A closer examination of the TEM results performed on the same 

sample (Figure 3.D) evidenced the presence of small, core-shell 

interconnected nanoparticles. Overall, it can be concluded that 

the reaction conditions not only influence the final composition, 

but also the size and morphology of the final material. To further 

explore this point, additional samples were prepared with 

intermediate ratios, for which the TEM and SEM analysis were 

performed. From R=10 till R=16 the nanoparticles shape 

transforms from needle-like (R=10) to rod-plate like (R=12) to a 

layered structure for higher R (R=16) as shown in Figure 4. From 

this figure, it can be also observed that the 2D structure, with the 

preferential growth direction, is completely lost for R=16, as also 

confirmed by TEM (Figure 5.A). An HR-TEM study also reveals a 

core-shell nature of the particles synthesised at 1200°C with R=16 

(Figure 5.B), where the crystalline core shows the (1-11) and 

(200) lattice planes for HfN (Figure 5.C) while the shell is 

amorphous. It must be noted that the shell is not observed for 

R<10 or lower reaction temperature (T<900°C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. SEM images of HfN samples synthesised at 1200°C with different R 

(from 10 till 16). 

 
Figure 5. TEM images of HfN sample synthesised at 1200°C with R=16 at 
increasing magnification. A) Overview of the nanoparticles. B) Single 
nanoparticle showing a core-shell structure and (c) HRTEM image showing the 
d-spacing of the nanoparticle core. 

 

XPS confirmed that the surface layer was oxygen-rich, which may 

be left after the conversion of the oxy-nitride phase in to the nitride 

one. The surface elemental composition (in wt.%) is reported in 

Table 2, while a comparison of XPS spectra bands for the Hf 4f, 

N 1s, C 1s and O 1s regions for each of the samples is shown in 

Figure 6. The fitted spectra, survey scans and peak assignment 

tables are shown in the supporting information (Figure SI.2-6 and 

Table SI.1-4).  

 

Table 2. Elemental composition from XPS in wt.% for the samples HfO2, HfN 

and Hf2ON2. 

 

Element → 

O 1s N 1s Hf 4f 
Compound 

↓ 

HfO2 16.88 2.23 45.9 

Hf2ON2 14.95 4.04 48.61 

HfN 9.05 2.79 14.76 

 

 

 

A B 

C D 
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Figure 6. Comparison of XPS spectra of HfO2, Hf2ON2 and HfN (before and 

after sputtering) in Hf 4f, N 1s, C 1s and O 1s regions.  

 

HfO2 was confirmed from photoelectron peaks at 16.35 and 16.88 

eV (Hf 4f7/2) agreeing well with previous characterisation 

results[32]. Lattice oxygen was also confirmed at 530.29 eV (O 1s 

spectra)[32]. A more reduced Hf species was observed in the 

oxynitride sample, with peaks at 14.66 and 16.01 eV 

corresponding to Hf-N and Hf-O respectively[33,34]. The formation 

of the oxynitride phase was further established from the analysis 

of the core level N 1s spectra, where peaks in the 395-397 eV 

region were observed, corresponding to new Hf-N bonds[20,33,35]. 

The HfN sample also showed oxidized Hf 4f7/2 (16.65 eV) and N 

1s at 401.34 eV, with the peak at 398.73 eV assigned to the 

overlap of the Hf 4p plasmon. This is consistent with the oxygen-

rich outer shell of the nanoparticles, as observed by TEM on 

samples prepared with higher urea/metal molar ratio (R). 

However, following etching of the sample under argon ion 

bombardment, the carbonaceous species was removed, and a 

new peak at 396.80 eV was deconvoluted, corresponding to Hf-N 
[20,33,35]. The binding energy of the Hf 4f peak also shifted from 

16.65 eV to 15.59 eV, further signifying the reduced Hf-N species 
[33,34]. 

 

Electrochemical testing. The electrocatalytic performance was 

examined for both Hf2ON2 and HfN. Commercial HfO2 and RuO2 

were also tested to compare the OER activity. The OER activity 

in Fe-free electrolyte was initially tested in order to avoid iron 

contaminations on the working electrode, which would affect the 

results. This is a very important point to be considered, since it 

was reported that even small impurities of iron have an enormous 

effect on the OER activity of the catalysts[36]. In fact, a plethora of 

OER catalysts reported so-far are tested in non-purified 

electrolytes containing traces of Fe impurities but this does not 

allow to determine the actual catalytic activity of the material 

under investigation. Initially, the samples were deposited on 

glassy carbon electrodes to measure the intrinsic OER activities. 

CVs were repeated until a reproducible voltammogram was 

obtained. In addition, commercial RuO2, a benchmark catalyst for 

OER[1], was used to compare the activity of our catalysts. The 

overpotential needed to achieve 10 mA/cm2 current density was 

used as a parameter to compare different catalysts studied, 

herein. As shown in figure 8A, RuO2 requires, as expected, lowest 

overpotential (321 mV) to achieve 10 mA/cm2 catalytic current, 

followed by HfN (504 mV), HfO2 (497 mV at 1 mA/cm2) and 

Hf2ON2 (577 mV at 8 mA/cm2). The overpotential values are in 

line with those observed for widely studied Ni(OH)2 catalyst 

measured in Fe-free electrolytes[36]. The lower overpotential of 

HfN compared to Hf2ON2 and HfO2 can be attributed to better 

electrical conductivity of HfN[22], which results in efficient charge 

transport. Tafel analysis was performed to gain insights on the 

mechanism underlying OER on our catalysts (figure 8B). The 

Tafel slope values are summarized in Table 3 which lie in the 

range of 130-300 mV/dec range for HfN and Hf2ON2 while a value 

of 385 mV/dec was obtained for HfO2. Next, we proceeded to 

measure the OER activity of our catalysts in normal commercially 

available NaOH electrolyte, which contains traces of Fe impurities, 

as this would be the obvious electrolyte of choice for commercial 

alkaline electrolysers. Figure 8C reports the CVs of the catalysts 

measured in 1M NaOH electrolyte (non-purified). As can be seen, 

the OER current densities increased substantially for HfN and 

Hf2ON2, while HfO2 showed similar activity. The Tafel plots are 

reported in figure 8D and the slope values reported in table 4 

indicate improved OER kinetics over HfN in the normal electrolyte. 

This is in line with the improvement observed for previously 

studied Ni(OH)2 catalysts[36].   

 

    

    

 
Figure 8. A) OER measurements using glassy carbon as supporting electrode, 
the CV of glassy carbon is reported for comparison. B) Tafel plots comparison 
in 1M NaOH purified electrolyte, C) OER measurements in 1M NaOH (non-
purified) electrolyte and D) Tafel plots comparison in 1M NaOH normal 
electrolyte for HfN, is Hf2ON2 and RuO2. The dashed black lines represent the 
linear fitting to calculate Tafel slopes. 

 

To better understand the reason behind the good performance of 

HfN as compared to Hf2ON2, double layer capacitance (Cdl) 

measurements were performed to determine their 

electrochemically active surface area (ECSA), following the 

procedure reported in literature[37]. The CVs for this purpose were 

measured in the range of 0-0.1 V vs Ag/AgCl where no faradic 

charge transfer occurred (See figure SI. 7). Despite having nearly 

similar Cdl values (figure SI.8.), HfN showed much higher activity 

for OER as compared to Hf2ON2, indicating higher intrinsic activity 

of HfN towards this reaction. The Cdl values for HfO2 were three 

A B 

C D 
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orders of magnitude lower than that of HfN, indicating lower ECSA 

of the former (see figure SI. 8). This, combined with the insulating 

nature of HfO2, might be the cause for the lowest OER activity of 

HfO2. This highlights that the catalyst having high conductivity 

with high ECSA is required to achieve high OER activity and that 

presence of Fe impurity only cannot guarantee the high OER 

activity. 

This is further supported by our electrochemical impedance 

spectroscopy (EIS) measurements. Nyquist plots of the 

impedance data are reported in figure 9, both for the purified and 

normal electrolyte. All the catalysts studied herein exhibit a single 

semicircle, which is related to the charge transfer resistance (Rct) 

associated with OER process. The size of the semicircle in the 

low-frequency range increases from HfN<Hf2ON2<HfO2, 

indicating that OER is most favoured on HfN electrodes and least 

favoured on HfO2 electrodes[38]. Furthermore, in normal 

electrolytes, the trend in Rct values remains the same while the 

values decrease considerably in all the cases as shown in Table 

4. This further highlights the efficient OER over HfN in both 

purified and normal electrolytes. 

Figure 9. Nyquist plots of HfN, Hf2ON2 and HfO2 at 1.72V vs RHE in A) purified 

1M NaOH and B) in normal 1M NaOH. 

 

In order to further maximize the OER catalytic activity of HfN, we 

deposited the catalyst ink on Ni foam, a support with uniform 

three-dimensional network, high surface area and good electron 

transport[39]. As can be seen from the polarization curves reported 

in Figure 10, OER currents improved significantly in both purified 

and normal electrolytes. The HfN-NF catalyst achieves 10 

mA/cm2 of OER current at an overpotential of only 391 mV in 

purified electrolyte, while in the normal electrolyte this value 

further improves to 358 mV. The Tafel slope values also improve 

in both cases indicating better kinetics of OER on HfN on porous 

3D NF substrate. The overpotential values obtained here are 

comparable to those of the widely studied Ni and Co-based 

catalysts and could be further improved by increasing ECSA of 

the HfN catalyst[7]. A comparison of the overpotential and Tafel 

slope values for the tested HfN with other nitrides-based catalysts 

reported in literature and tested in similar conditions is reported in 

figure SI.6. 

 

Figure 10. A) OER measurements in 1M NaOH purified and non-purified 

electrolyte, using nickel foam (NF) as support for HfN. The CV of Nickel foam is 

shown for comparison. B) Tafel plots comparison for HfN, on nickel foam (NF), 

measured both in the normal and in the purified electrolyte. The dashed black 

lines represent the linear fitting to calculate Tafel slopes.  

 

Table 3. Over potential, Tafel slope and average Cd values for the HfN, Hf2ON2 

and HfO2 catalysts, tested with different supports both in the normal and in the 

purified electrolyte. 

 

Catalyst 
Over potential 

(mV) at 10 
mA/cm2 

Tafel slope 
(mV/dec) 

Average 
Cd 

(mF/cm2) 

HfN (GC) 
purified 

electrolyte 
504 mV 295 0.0013 

HfN (GC) 
normal 

electrolyte 
436 mV 89  

Hf2ON2 (GC) 
purified 

electrolyte 

577 mV (at 
8mA/cm2) 

139 0.0014 

Hf2ON2 (GC) 
normal 

electrolyte 
557 mV 115  

HfO2 (GC) 
purified 

electrolyte 

497 mV (at 
1mA/cm2) 

385 3.9*10-5 

HfO2 (GC) 
normal 

electrolyte 

585 mV (at 
5mA/cm2) 

128  

HfN (NF) 
purified 

electrolyte 
391 mV 84  

HfN (NF) 
normal 

electrolyte 

358 mV 85  

 

Table 4. Charge transfer resistance values for the HfN, Hf2ON2 and HfO2 

catalysts, both in the normal and in 1M NaOH purified electrolyte. 

 

Sample 

Rct (Ω) 

Purified electrolyte Normal electrolyte 

HfN 110 47 

Hf2ON2 505 338 

HfO2 2039 618 

 

Finally, the stability of the HfN catalyst was measured under OER 

operating conditions at a constant applied current density of 10 

mA/cm2 for 24h as reported in figure 11. From this figure, it can 

be appreciated that the potential required to maintain the applied 

current density remains nearly constant through the 24h 

indicating excellent stability of our HfN catalyst. 
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Figure 11. Chronopotentiometry measurement of HfN sample on NF, measured 

at 10 mA/cm2. 

 

The morphology (via TEM) and composition (via PXRD) of the 

HfN catalyst was examined after the stability tests. As shown in 

figure SI.9-11 and table SI.5, no significant changes were 

observed, further confirming the stability of our HfN catalyst.  

Conclusion 

Well-defined and small nanoparticles of Hf2ON2 and HfN were 

prepared and tested for the first time for OER. An extensive 

characterization was made before and after testing, using powder 

XRD, SEM, HR-TEM and XPS. The OER performance of Hf2ON2 

and HfN were compared in Fe-free purified and normal electrolyte 

(1M NaOH), using both glassy carbon and nickel foam as 

supports, to determine the actual catalytic activity of the materials 

under investigation. HfN showed the best activity, attributed to its 

high electrical conductivity, favouring an efficient charge transport. 

The HfN catalyst achieved, 10 mA/cm2 of OER current at an 

overpotential of only 391 mV and 358 mV in purified and normal 

electrolyte, respectively, with a Tafel slope of 84 and 85 mV/dec. 

Long-term stability for 24h of HfN under OER operating conditions 

at a constant current density of 10 mA/cm2 was tested and the 

potential remained nearly constant indicating excellent stability of 

our HfN catalyst. The stability was further confirmed by PXRD and 

TEM done on the catalysts after OER test. The results presented 

so far place the system among the most promising catalyst for 

OER tested to date, in term of sustainability, activity and stability. 

Experimental Section 

Nanoparticles preparation. In a typical experiment, hafnium (IV) chloride 

(HfCl4, VWR 98+%)/methanol solutions (1.24M) were prepared and added 

with suitable amounts of urea (CO(NH2)2, Sigma Aldrich 99%) to reach a 

final urea/HfCl4 molar ratio (R) from 1 to 16. Mixtures were stirred till a clear, 

viscous yet transparent solution was observed (Fig.12 A). The gel-like 

precursor was then thermally treated under N2 flow up to 1200˚C for 3 h 

and thereafter cooled to room temperature. The final product was a fine 

powder, light grey for samples treated up to 900°C (Fig.12 B) and dark 

grey for the ones treated up to 1200°C (Fig.12 C). For comparison, HfO2 

was also prepared via UGR, using a mixed flow of N2 and air. The 

usefulness of the UGR to prepare metal oxides was also previously 

reported[40].  

 

Figure 12. Photographs showing the precursor solution (A), the final product 
obtained after heat treatment under N2 flow at 900 °C (B) and 1200°C (C), 
respectively. Phase attribution was made by PXRD study (see text for details). 

Electrochemical measurements. The prepared HfN and Hf2ON2 were 

tested for OER using IVIUM Compactstat potentiostat and their 

performances compared with those of commercial HfO2 (Sigma Aldrich, 

98%) and RuO2 (Sigma Aldrich, 99.9%). The catalyst ink was prepared 

grounding in a mortar 2.5 mg of the powder catalyst and then adding 100 

microliters of Nafion® solution, 0.25% in ethanol (5 wt % in lower aliphatic 

alcohols and 15−20% water, Sigma Aldrich). For the catalysts deposited 

on glassy carbon substrates, conductive carbon black was added (carbon 

black super P Alfa-Aesar, 99+%). The ink was ultrasonicated for 30 min 

and then drop-cast with different loadings on different electrode support, 

e.g. glassy carbon (3 mm diameter) and nickel foam (Sigma Aldrich, 95%, 

foam, thickness 1.6 mm, bulk density 0.45g/cm3, porosity 95%) and 

allowed to dry at room temperature in ambient air. The loading for each 

catalyst was optimized to obtain maximum OER activity. The best ink 

loading was found to be 5 μl for Hf2ON2 (1.96mg/cm2), 10 μl for HfN 

(4.57mg/cm2) and 20 μl for HfO2 (7.8 mg/cm2).  OER measurements were 

conducted using a three-electrode cell set-up, using a double junction 

Ag/AgCl (3.8 M KCl) as a reference electrode and platinum wire as counter 

electrode. Cyclic voltammetry (CV) measurements were performed in 1 M 

NaOH electrolyte (Sigma Aldrich, >98%, diluted with Milli-Q water, 18.2 

mΩ cm at 25°C) at room temperature in the range of 0-0.8 V (vs Ag/AgCl) 

with a scan rate of 5mV/second. Impedance measurements were 

performed in the frequency range from 0.1 Hz to 1 MHz. All data were iR-

corrected using iR correction function of IVIUM software. The potentials 

were converted to RHE (reversible hydrogen electrode) scale by using the 

following formula: ERHE=E0
Ag/AgCl + EAg/AgCl + (0.059 × pH). Long-term 

stability measurement was conducted by chronopotentiometry at an 

applied current density of 10 mA/cm2. 

Electrolyte purification. Iron-free electrolyte was obtained following the 

procedure reported by Trotochaud et al.[36], briefly, 2 g of Ni(NO3)2*6 H2O 

(Sigma Aldrich, 99.999%) were dissolved, using a centrifuge tube, in few 

ml of water (Milli-Q water, 18.2 mΩ cm at 25°C), followed by the addition 

of 20 ml of 1M NaOH. This resulted in the precipitation of green coloured 

Ni(OH)2. The mixture underwent several cycles of centrifuging and 

supernatant removal, adding a fresh mixture of 20 ml water/ 1 ml 1M NaOH 

every time.  After several washings, the tube was filled with 1M NaOH, 

shaken and left overnight. The purified electrolyte was then used for OER 

testing in Fe free conditions. 
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