1,059 research outputs found

    Lorentz gauge theory as a model of emergent gravity

    Full text link
    We consider a class of Lorentz gauge gravity theories within Riemann-Cartan geometry which admits a topological phase in the gravitational sector. The dynamic content of such theories is determined only by the contortion part of the Lorentz gauge connection. We demonstrate that there is a unique Lagrangian that admits propagating spin one mode in correspondence with gauge theories of other fundamental interactions. Remarkably, despite the R^2 type of the Lagrangian and non-compact structure of the Lorentz gauge group, the model possesses rather a positive-definite Hamiltonian. This has been proved in the lowest order of perturbation theory. This implies further consistent quantization and leads to renormalizable quantum theory. It is assumed that the proposed model describes possible mechanism of emergent Einstein gravity at very early stages of the Universe due to quantum dynamics of contortion.Comment: 11 pages, final version, minor correction

    Micro-Auger Electron Spectroscopy Studies of Chemical and Electronic Effects at GaN-Sapphire Interfaces

    Get PDF
    We have used cross-sectional micro-Auger electron spectroscopy (AES), coupled with micro-cathodoluminescence (CLS) spectroscopy, in a UHV scanning electron microscope to probe the chemical and related electronic features of hydride vapor phase epitaxy GaN/sapphire interfaces on a nanometer scale. AES images reveal dramatic evidence for micron-scale diffusion of O from Al2O3 into GaN. Conversely, plateau concentrations of N can extend microns into the sapphire, corresponding spatially to a 3.8 eV defect emission and Auger chemical shifts attributed to Al-N-O complexes. Interface Al Auger signals extending into GaN indicates AlGaN alloy formation, consistent with a blue-shifted CLS local interface emission. The widths of such interface transition regions range from ≪100 nm to ∼1 μm, depending on surface pretreatment and growth conditions. Secondary ion mass spectroscopy depth profiles confirm the elemental character and spatial extent of diffusion revealed by micro-AES, showing that cross-sectional AES is a useful approach to probe interdiffusion and electronic properties at buried interfaces

    Meson Exchange Effect on Color Superconductivity

    Get PDF
    We investigate the effects of pion and gluon exchanges on the formation of two-flavor color superconductivity at moderate density, μ<1GeV\mu <1 GeV. The chiral quark model proposed by Manohar and Georgi containing pions as well as gluons is employed to show that the pion exchange reduces substantially the value of the superconducting gap gotten with the gluon exchange only. It turns out that the pion exchanges produce a repulsion between quark-quark pair in a spin and isospin singlet state. We suggest that the phase consisiting of pions, gluons and quarks is one of the candidates of in-medium QCD phase at moderate density.Comment: 8 pages, 1 figure, minor correction

    Four-nucleon contact interactions from holographic QCD

    Full text link
    We calculate the low energy constants of four-nucleon interactions in an effective chiral Lagrangian in holographic QCD. We start with a D4-D8 model to obtain meson-nucleon interactions and then integrate out massive mesons to obtain the four-nucleon interactions in 4D. We end up with two low energy constants at the leading order and seven of them at the next leading order, which is consistent with the effective chiral Lagrangian. The values of the low energy constants are evaluated with the first five Kaluza-Klein resonances.Comment: 28 page

    Can majority support save an endangered language? A case study of language attitudes in Guernsey

    Get PDF
    Many studies of minority language revitalisation focus on the attitudes and perceptions of minorities, but not on those of majority group members. This paper discusses the implications of these issues, and presents research into majority andf minority attitudes towards the endangered indigenous vernacular of Guernsey, Channel Islands. The research used a multi-method approach (questionnaire and interview) to obtain attitudinal data from a representative sample of the population that included politicians and civil servants (209 participants). The findings suggested a shift in language ideology away from the post-second world war ‘culture of modernisation’ and monolingual ideal, towards recognition of the value of a bi/trilingual linguistic heritage. Public opinion in Guernsey now seems to support the maintenance of the indigenous language variety, which has led to a degree of official support. The paper then discusses to what extent this ‘attitude shift’ is reflected in linguistic behaviour and in concrete language planning measures

    Self-bound dense objects in holographic QCD

    Full text link
    We study a self-bound dense object in the hard wall model. We consider a spherically symmetric dense object which is characterized by its radial density distribution and non-uniform but spherically symmetric chiral condensate. For this we analytically solve the partial differential equations in the hard wall model and read off the radial coordinate dependence of the density and chiral condensate according to the AdS/CFT correspondence. We then attempt to describe nucleon density profiles of a few nuclei within our framework and observe that the confinement scale changes from a free nucleon to a nucleus. We briefly discuss how to include the effect of higher dimensional operator into our study. We finally comment on possible extensions of our work.Comment: 17 pages, 5 figures, figures replaced, minor revision, to appear in JHE

    Precision Determination of the Neutron Spin Structure Function g1n

    Full text link
    We report on a precision measurement of the neutron spin structure function g1ng^n_1 using deep inelastic scattering of polarized electrons by polarized ^3He. For the kinematic range 0.014<x<0.7 and 1 (GeV/c)^2< Q^2< 17 (GeV/c)^2, we obtain ∫0.0140.7g1n(x)dx=−0.036±0.004(stat)±0.005(syst)\int^{0.7}_{0.014} g^n_1(x)dx = -0.036 \pm 0.004 (stat) \pm 0.005 (syst) at an average Q2=5(GeV/c)2Q^2=5 (GeV/c)^2. We find relatively large negative values for g1ng^n_1 at low xx. The results call into question the usual Regge theory method for extrapolating to x=0 to find the full neutron integral ∫01g1n(x)dx\int^1_0 g^n_1(x)dx, needed for testing quark-parton model and QCD sum rules.Comment: 5 pages, 3 figures To be published in Phys. Rev. Let

    Measurement of the Proton and Deuteron Spin Structure Function g_1 in the Resonance Region

    Get PDF
    We have measured the proton and deuteron spin structure functions g_1^p and g_1^d in the region of the nucleon resonances for W^2 < 5 GeV^2 and Q2≃0.5Q^2\simeq 0.5 and Q2≃1.2Q^2\simeq 1.2 GeV^2 by inelastically scattering 9.7 GeV polarized electrons off polarized 15NH3^{15}NH_3 and 15ND3^{15}ND_3 targets. We observe significant structure in g_1^p in the resonance region. We have used the present results, together with the deep-inelastic data at higher W^2, to extract Γ(Q2)≡∫01g1(x,Q2)dx\Gamma(Q^2)\equiv\int_0^1 g_1(x,Q^2) dx. This is the first information on the low-Q^2 evolution of Gamma toward the Gerasimov-Drell-Hearn limit at Q^2 = 0.Comment: 7 pages, 2 figure

    Measurement of inclusive D*+- and associated dijet cross sections in photoproduction at HERA

    Get PDF
    Inclusive photoproduction of D*+- mesons has been measured for photon-proton centre-of-mass energies in the range 130 < W < 280 GeV and a photon virtuality Q^2 < 1 GeV^2. The data sample used corresponds to an integrated luminosity of 37 pb^-1. Total and differential cross sections as functions of the D* transverse momentum and pseudorapidity are presented in restricted kinematical regions and the data are compared with next-to-leading order (NLO) perturbative QCD calculations using the "massive charm" and "massless charm" schemes. The measured cross sections are generally above the NLO calculations, in particular in the forward (proton) direction. The large data sample also allows the study of dijet production associated with charm. A significant resolved as well as a direct photon component contribute to the cross section. Leading order QCD Monte Carlo calculations indicate that the resolved contribution arises from a significant charm component in the photon. A massive charm NLO parton level calculation yields lower cross sections compared to the measured results in a kinematic region where the resolved photon contribution is significant.Comment: 32 pages including 6 figure
    • …
    corecore