9,046 research outputs found

    The additional-mode garden of RR Lyrae stars

    Full text link
    Space-based photometric missions revealed a surprising abundance of millimagnitude-level additional modes in RR Lyrae stars. The modes that appear in the modulated fundamental-mode (RRab) stars can be ordered into four major categories. Here we present the distribution of these groups in the Petersen diagram, and discuss their characteristics and connections to additional modes observed in other RR Lyrae stars.Comment: 4 pages, 4 figures, proceedings of the Joint TASC2-KASC9-SPACEINN-HELAS8 Conference "Seismology of the Sun and the Distant Stars 2016", to be published in EPJ Wo

    El concepto de energía en los libros de textos : de las concepciones previas a la propuesta de un nuevo sublenguaje

    Get PDF
    In this work are studied the already existing interpretations and conceptions on the concept of energy and other allied concepts in Basic Physics textbooks commonly used in the initial courses at university and in courses prior to university level (Basic School) being given in Venezuela. In this study we have used techniques of analysis of content and have made a historic analysis to round up the conclusions of the work. It becomes necessary to build a new language, simple but internally coherent, and within the current scientific paradigms. In this work we start the discussion of this new language within the area of energy and related concepts

    Dual superconductivity and vacuum properties in Yang--Mills theories

    Get PDF
    We address, within the dual superconductivity model for color confinement, the question whether the Yang-Mills vacuum behaves as a superconductor of type I or type II. In order to do that we compare, for the theory with gauge group SU(2), the determination of the field penetration depth λ\lambda with that of the superconductor correlation length ξ\xi. The latter is obtained by measuring the temporal correlator of a disorder parameter developed by the Pisa group to detect dual superconductivity. The comparison places the vacuum close to the border between type I and type II and marginally on the type II side. We also check our results against the study of directly measurable effects such as the interaction between two parallel flux tubes, obtaining consistent indications for a weak repulsive behaviour. Future strategies to improve our investigation are discussed.Comment: 23 pages, 15 figures. Simulations on finer lattices and with different monopole charges added. Final version to be published in Nuclear Physics

    Modeling and experimental verification of an ultra-wide bandgap in 3D phononic crystal

    Get PDF
    This paper reports a comprehensive modeling and experimental characterization of a three-dimensional phononic crystal composed of a single material, endowed with an ultra-wide complete bandgap. The phononic band structure shows a gap-mid gap ratio of 132% that is by far the greatest full 3D bandgap in literature for any kind of phononic crystals. A prototype of the finite crystal structure has been manufactured in polyamide by means of additive manufacturing technology and tested to assess the transmission spectrum of the crystal. The transmission spectrum has been numerically calculated taking into account a frequency-dependent elastic modulus and a Rayleigh model for damping. The measured and numerical transmission spectra are in good agreement and present up to 75 dB of attenuation for a three-layer crystal

    Application of optimally-shaped phononic crystals to reduce anchor losses of MEMS resonators

    Get PDF
    This work is focused on the application of Phononic Crystals to reduce anchor losses of MEMS contour mode resonators. Anchor losses dominates the losses in these type of released resonators at low frequency and at low temperature. The use of phononic crystals, intended as finite-periodic distribution of holes in the anchor, is fully compatible with fabrication processes and moreover it is easy to implement. The numerical results obtained in this work show how the use of these crystals can significantly reduce the anchor losses: without the use of the crystal the Q-factor related to only anchor losses is 344, with the use of the crystal it can reach up to 105900

    Constructive control of quantum systems using factorization of unitary operators

    Get PDF
    We demonstrate how structured decompositions of unitary operators can be employed to derive control schemes for finite-level quantum systems that require only sequences of simple control pulses such as square wave pulses with finite rise and decay times or Gaussian wavepackets. To illustrate the technique it is applied to find control schemes to achieve population transfers for pure-state systems, complete inversions of the ensemble populations for mixed-state systems, create arbitrary superposition states and optimize the ensemble average of dynamic observables.Comment: 28 pages, IoP LaTeX, principal author has moved to Cambridge University ([email protected]
    corecore