203 research outputs found
Combined biological therapy with lanreotide autogel and cabergoline in the treatment of MEN-1-related insulinomas.
Multiple endocrine neoplasia type 1 (MEN1) is a hereditary syndrome associated with the development of many endocrine tumors, involving mainly pituitary, parathyroids, pancreas, although a proliferative state interests all neuroendocrine system. MEN1 pancreatic neuroendocrine tumors (pNETs) are multiples and can secrete different hormones. The therapeutic approach is based on surgery which usually is followed by tumor relapse or persistence unless to be highly aggressive. Biotherapy with somatostatin analogs and dopamine agonists could be of great benefit to manage these patients without altering their life quality. We report a case of a 36-year-old MEN1 man affected with multicentric pNETs associated with insulinoma syndrome. Therapy with symptomatic agents (diazoxide), as well as biotherapy (lanreotide, cabergoline) was started. At 6-month follow-up, symptomatic agents were stopped and disease control was only based on lanreotide plus cabergoline. This combined biotherapy was able to control endocrine syndromes and tumor growth. Subsequently, a safer and selective surgical intervention on pNETs was performed. An excellent response to therapy with lanreotide autogel and cabergoline has been observed in a MEN1 patient with pNETs associated with insulinoma syndrome. The potential synergistic effects of lanreotide autogel and cabergoline on insulin-secreting neuroendocrine tumors are discussed
Theoretical Determination of the pK a Values of Betalamic Acid Related to the Free Radical Scavenger Capacity: Comparison Between Empirical and Quantum Chemical Methods
Health benefits of dietary phytochemicals have been suggested in recent years. Among 1000s of different compounds, Betalains, which occur in vegetables of the Cariophyllalae order (cactus pear fruits and red beet), have been considered because of reducing power and potential to affect redox-modulated cellular processes. The antioxidant power of Betalains is strictly due to the dissociation rate of the acid moieties present in all the molecules of this family of phytochemicals. Experimentally, only the pK a values of betanin were determined. Recently, it was evidenced it was evidenced as the acid dissociation, at different environmental pHs, affects on its electron-donating capacity, and further on its free radical scavenging power. The identical correlation was studied on another Betalains family compound, Betalamic Acid. Experimental evidences showed that the free radical scavenging capacity of this compound drastically decreases at pH > 5, but pK a values were experimentally not measured. With the aim to justify the Betalamic Acid behavior as free radical scavenger, in this paper we tried to predict in silico the pK a values by means different approaches. Starting from the known experimental pK as of acid compounds, both phytochemicals and small organic, two empirical approaches and quantum-mechanical calculation were compared to give reliable prediction of the pK as of Betalamic Acid. Results by means these computational approaches are consistent with the experimental evidences. As shown herein, in silico, the totally dissociated species, at the experimental pH > 5 in solution, is predominant, exploiting the higher electron-donating capability (HOMO energy). Therefore, the computational estimated pK a values of Betalamic Acid resulted very reliable
Palmitoylethanolamide exerts neuroprotective effects in mixed neuroglial cultures and organotypic hippocampal slices via peroxisome proliferator-activated receptor-α
<p>Abstract</p> <p>Background</p> <p>In addition to cytotoxic mechanisms directly impacting neurons, β-amyloid (Aβ)-induced glial activation also promotes release of proinflammatory molecules that may self-perpetuate reactive gliosis and damage neighbouring neurons, thus amplifying neuropathological lesions occurring in Alzheimer's disease (AD). Palmitoylethanolamide (PEA) has been studied extensively for its anti-inflammatory, analgesic, antiepileptic and neuroprotective effects. PEA is a lipid messenger isolated from mammalian and vegetable tissues that mimics several endocannabinoid-driven actions, even though it does not bind to cannabinoid receptors. Some of its pharmacological properties are considered to be dependent on the expression of peroxisome proliferator-activated receptors-α (PPARα).</p> <p>Findings</p> <p>In the present study, we evaluated the effect of PEA on astrocyte activation and neuronal loss in models of Aβ neurotoxicity. To this purpose, primary rat mixed neuroglial co-cultures and organotypic hippocampal slices were challenged with Aβ<sub>1-42 </sub>and treated with PEA in the presence or absence of MK886 or GW9662, which are selective PPARα and PPARγ antagonists, respectively. The results indicate that PEA is able to blunt Aβ-induced astrocyte activation and, subsequently, to improve neuronal survival through selective PPARα activation. The data from organotypic cultures confirm that PEA anti-inflammatory properties implicate PPARα mediation and reveal that the reduction of reactive gliosis subsequently induces a marked rebound neuroprotective effect on neurons.</p> <p>Conclusions</p> <p>In line with our previous observations, the results of this study show that PEA treatment results in decreased numbers of infiltrating astrocytes during Aβ challenge, resulting in significant neuroprotection. PEA could thus represent a promising pharmacological tool because it is able to reduce Aβ-evoked neuroinflammation and attenuate its neurodegenerative consequences.</p
SCD1 Inhibition Causes Cancer Cell Death by Depleting Mono-Unsaturated Fatty Acids
Increased metabolism is a requirement for tumor cell proliferation. To understand the dependence of tumor cells on fatty acid metabolism, we evaluated various nodes of the fatty acid synthesis pathway. Using RNAi we have demonstrated that depletion of fatty-acid synthesis pathway enzymes SCD1, FASN, or ACC1 in HCT116 colon cancer cells results in cytotoxicity that is reversible by addition of exogenous fatty acids. This conditional phenotype is most pronounced when SCD1 is depleted. We used this fatty-acid rescue strategy to characterize several small-molecule inhibitors of fatty acid synthesis, including identification of TOFA as a potent SCD1 inhibitor, representing a previously undescribed activity for this compound. Reference FASN and ACC inhibitors show cytotoxicity that is less pronounced than that of TOFA, and fatty-acid rescue profiles consistent with their proposed enzyme targets. Two reference SCD1 inhibitors show low-nanomolar cytotoxicity that is offset by at least two orders of magnitude by exogenous oleate. One of these inhibitors slows growth of HCT116 xenograft tumors. Our data outline an effective strategy for interrogation of on-mechanism potency and pathway-node-specificity of fatty acid synthesis inhibitors, establish an unambiguous link between fatty acid synthesis and cancer cell survival, and point toward SCD1 as a key target in this pathway
Heat stress causes spatially-distinct membrane re-modelling in K562 leukemia cells
Cellular membranes respond rapidly to various environmental perturbations. Previously we showed that modulations in membrane fluidity achieved by heat stress (HS) resulted in pronounced membrane organization alterations which could be intimately linked to the expression and cellular distribution of heat shock proteins. Here we examine heat-induced membrane changes using several visualisation methods. With Laurdan two-photon microscopy we demonstrate that, in contrast to the enhanced formation of ordered domains in surface membranes, the molecular disorder is significantly elevated within the internal membranes of cells preexposed to mild HS. These results were compared with those obtained by anisotropy, fluorescence lifetime and electron paramagnetic resonance measurements. All probes detected membrane changes upon HS. However, the structurally different probes revealed substantially distinct alterations in membrane heterogeneity. These data call attention to the careful interpretation of results obtained with only a single label. Subtle changes in membrane microstructure in the decision-making of thermal cell killing could have potential application in cancer therapy
HPV16 E7-Dependent Transformation Activates NHE1 through a PKA-RhoA-Iinduced Inhibition of p38alpha
Background: Neoplastic transformation originates from a large number of different genetic alterations. Despite this genetic variability, a common phenotype to transformed cells is cellular alkalinization. We have previously shown in human keratinocytes and a cell line in which transformation can be turned on and followed by the inducible expression of the E7 oncogene of human papillomavirus type 16 (HPV16), that intracellular alkalinization is an early and essential physiological event driven by the up-regulation of the Na/H-+(+) exchanger isoform 1 (NHE1) and is necessary for the development of other transformed phenotypes and the in vivo tumor formation in nude mice.Methodology: Here, we utilize these model systems to elucidate the dynamic sequence of alterations of the upstream signal transduction systems leading to the transformation-dependent activation of NHE1.Principal Findings: We observe that a down-regulation of p38 MAPK activity is a fundamental step in the ability of the oncogene to transform the cell. Further, using pharmacological agents and transient transfections with dominant interfering, constitutively active, phosphorylation negative mutants and siRNA strategy to modify specific upstream signal transduction components that link HPV16 E7 oncogenic signals to up-regulation of the NHE1, we demonstrate that the stimulation of NHE1 activity is driven by an early rise in cellular cAMP resulting in the down-stream inhibition of p38 MAPK via the PKA-dependent phosphorylation of the small G-protein, RhoA, and its subsequent inhibition.Conclusions: All together these data significantly improve our knowledge concerning the basic cellular alterations involved in oncogene-driven neoplastic transformation
Supportive and symptomatic management of amyotrophic lateral sclerosis
The main aims in the care of individuals with amyotrophic lateral sclerosis (ALS) are to minimize morbidity and maximize quality of life. Although no cure exists for ALS, supportive and symptomatic care provided by a specialist multidisciplinary team can improve survival. The basis for supportive management is shifting from expert consensus guidelines towards an evidence-based approach, which encourages the use of effective treatments and could reduce the risk of harm caused by ineffective or unsafe interventions. For example, respiratory support using noninvasive ventilation has been demonstrated to improve survival and quality of life, whereas evidence supporting other respiratory interventions is insufficient. Increasing evidence implicates a causal role for metabolic dysfunction in ALS, suggesting that optimizing nutrition could improve quality of life and survival. The high incidence of cognitive dysfunction and its impact on prognosis is increasingly recognized, although evidence for effective treatments is lacking. A variety of strategies are used to manage the other physical and psychological symptoms, the majority of which have yet to be thoroughly evaluated. The need for specialist palliative care throughout the disease is increasingly recognized. This Review describes the current approaches to symptomatic and supportive care in ALS and outlines the current guidance and evidence for these strategies
NADPH oxidase elevations in pyramidal neurons drive psychosocial stress-induced neuropathology
Oxidative stress is thought to be involved in the development of behavioral and histopathological alterations in animal models of psychosis. Here we investigate the causal contribution of reactive oxygen species generation by the phagocyte NADPH oxidase NOX2 to neuropathological alterations in a rat model of chronic psychosocial stress. In rats exposed to social isolation, the earliest neuropathological alterations were signs of oxidative stress and appearance of NOX2. Alterations in behavior, increase in glutamate levels and loss of parvalbumin were detectable after 4 weeks of social isolation. The expression of the NOX2 subunit p47phox was markedly increased in pyramidal neurons of isolated rats, but below detection threshold in GABAergic neurons, astrocytes and microglia. Rats with a loss of function mutation in the NOX2 subunit p47phox were protected from behavioral and neuropathological alterations induced by social isolation. To test reversibility, we applied the antioxidant/NOX inhibitor apocynin after initiation of social isolation for a time period of 3 weeks. Apocynin reversed behavioral alterations fully when applied after 4 weeks of social isolation, but only partially after 7 weeks. Our results demonstrate that social isolation induces rapid elevations of the NOX2 complex in the brain. Expression of the enzyme complex was strongest in pyramidal neurons and a loss of function mutation prevented neuropathology induced by social isolation. Finally, at least at early stages, pharmacological targeting of NOX2 activity might reverse behavioral alterations
- …