796 research outputs found

    Theory of terahertz electric oscillations by supercooled superconductors

    Full text link
    We predict that below T_c a regime of negative differential conductivity (NDC) can be reached. The superconductor should be supercooled to T<T_c in the normal phase under DC voltage. In such a nonequilibrium situation the NDC of the superconductor is created by the excess conductivity of the fluctuation Cooper pairs. We propose NDC of supercooled superconductors to be used as an active medium for generation of electric oscillations. Such generators can be used in the superconducting electronics as a new type THz source of radiation. Oscillations can be modulated by the change of the bias voltage, electrostatic doping by a gate electrode when the superconductor is the channel of a field effect transistor, or by light. When small amplitude oscillations are stabilized near the critical temperature T_c the generator can be used as a bolometer. The essential for the applications NDC is predicted by the solution of the Boltzmann kinetic equation for the metastable in the normal phase Cooper pairs. Boltzmann equation for fluctuation Cooper pairs is a result of state-of-the-art application of the microscopic theory of superconductivity. Our theoretical conclusions are based on some approximations like time dependent Ginzburg-Landau theory, but nevertheless can reliably predict appearance of NDC. The maximal frequency at which superconductors can operate as generators is determined by the critical temperature \hbar omega_max ~ k_B T_c. For high-T_c superconductors this maximal frequency falls well inside the terahertz range. Technical conditions to avoid nucleation of the superconducting phase are briefly discussed. We suggest that nanostructured high-T_c superconductors patterned in a single chip can give the best technical performance of the proposed oscillator.Comment: 7 page

    Perfectionism and self-conscious emotions in British and Japanese students: Predicting pride and embarrassment after success and failure

    Get PDF
    Regarding self-conscious emotions, studies have shown that different forms of perfectionism show different relationships with pride, shame, and embarrassment depending on success and failure. What is unknown is whether these relationships also show cultural variations. Therefore, we conducted a study investigating how self-oriented and socially prescribed perfectionism predicted pride and embarrassment after success and failure comparing 363 British and 352 Japanese students. Students were asked to respond to a set of scenarios where they imagined achieving either perfect (success) or flawed results (failure). In both British and Japanese students, self-oriented perfectionism positively predicted pride after success and embarrassment after failure whereas socially prescribed perfectionism predicted embarrassment after success and failure. Moreover, in Japanese students, socially prescribed perfectionism positively predicted pride after success and self-oriented perfectionism negatively predicted pride after failure. The findings have implications for our understanding of perfectionism indicating that the perfectionism–pride relationship not only varies between perfectionism dimensions, but may also show cultural variations

    Considerations In Developing And Utilizing Operator Training Simulators

    Get PDF
    Effective electric system operation depends on strengthening the relationship between the system operator and the electrical system with its associated control system. This relationship can be developed through a training medium which increases the operator\u27s knowledge of the behavior of the power system under various operating conditions and contingencies, and its response to control actions. An Operator Training Simulator (OTS), which simulates the static and dynamic responses of the operator\u27s power system and his control system, can accomplish these training objectives. The concepts developed in this paper are based on the work of the project team through funding by the Electric Power Research Institute. Copyright © 1983 by The Institute of Electrical and Electronics Engineers, Inc

    Mice lacking the Cβ subunit of PKA are resistant to angiotensin II-induced cardiac hypertrophy and dysfunction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>PKA is a ubiquitous, multi-subunit cellular kinase that regulates a number of different physiological responses in response to cAMP, including metabolism, cell division, and cardiac function. Numerous studies have implicated altered PKA signaling in cardiac dysfunction. Recently, it has been shown that mice lacking the catalytic β subunit of PKA (PKA Cβ) are protected from age-related problems such as weight gain and enlarged livers, and we hypothesized that these mice might also be resistant to cardiomyopathy.</p> <p>Findings</p> <p>Angiotensin II (ang II) induced hypertension in both PKA Cβ null mice and their WT littermates. However, PKA Cβ null mice were resistant to a number of ang II-induced, cardiopathological effects observed in the WT mice, including hypertrophy, decreased diastolic performance, and enlarged left atria.</p> <p>Conclusion</p> <p>The Cβ subunit of PKA plays an important role in angiotensin-induced cardiac dysfunction. The Cβ null mouse highlights the potential of the PKA Cβ subunit as a pharmaceutical target for hypertrophic cardiac disease.</p

    REVIEW: Life-cycle, total-industry genetic improvement of feed efficiency in beef cattle: Blueprint for the Beef Improvement Federation

    Get PDF
    On a life-cycle basis, beef animals are able to consume large amounts of low-cost, low-quality forages relative to higher-cost concentrates compared with pigs and chickens. However, of the 3, beef is still more expensive to produce on a cost–per–edible pound basis. Accordingly, there is need for genetic programs and management changes that will improve efficiency, sustainability, and profitability of beef production. Options include improving reproductive rate, reducing feed used for maintenance, or both, while not reducing output. A goal for improving efficiency of feed utilization is to reduce the amount or proportion of feed used for maintenance. Such reduction is a target for genetic improvement, but such a goal does not include defining a single measure of efficiency. A single efficiency measure would likely lead to single-trait selection and not account for any potentially antagonistic effects on other production characteristics. Because we are not able to explain all variation in individual-animal intake from only knowledge of BW maintained and level of production, measuring feed intake is necessary. Therefore, our recommendation is that national cattle evaluation systems analyze feed intake as an economically relevant trait with incorporation of appropriate indicator traits for an EPD for feed intake requirements that could then be used in a multiple-trait setting such as in a selection index. With improvements in technology for measurement of feed intake, individual measures of feed intake should continually be collected to facilitate development of genetic predictors that enhance accuracy of prediction of progeny differences in national cattle evaluations

    Genetic parameters estimated at receiving for circulating cortisol, immunoglobulin G, interleukin 8, and incidence of bovine respiratory disease in feedlot beef steers

    Get PDF
    Citation: Cockrum, R. R., Speidel, S. E., Salak-Johnson, J. L., Chase, C. C. L., Peel, R. K., Weaber, R. L., . . . Enns, R. M. (2016). Genetic parameters estimated at receiving for circulating cortisol, immunoglobulin G, interleukin 8, and incidence of bovine respiratory disease in feedlot beef steers. Journal of Animal Science, 94(7), 2770-2778. doi:10.2527/jas2015-0222Bovine respiratory disease complex (i.e., shipping fever and bacterial bronchopneumonia) is a multifaceted respiratory illness influenced by numerous environmental factors and microorganisms. Bovine respiratory disease (BRD) is just one component of BRD complex. Because BRD is moderately heritable, it may be possible to reduce the incidence of BRD through genetic selection. The objectives of this study were to determine the heritability and associative genetic relationships among immune system traits (i.e., cortisol, total IgG, IgG isotypes, and IL-8) in cattle monitored for BRD incidence. At an average of 83 d after weaning (219 d age and mean = 221.7 kg [SD 4.34]), crossbred Bos taurus steer calves (n = 2,869) were received at a commercial feedlot in southeastern Colorado over a 2-yr period. At receiving, jugular blood samples were collected at 212 (yr 1) and 226 d (yr 2) of age for immune trait analyses. The BRD phenotype was defined as a binomial variable (0 = no and 1 = yes) and compared with immune system traits measured at receiving (prior to illness onset). An animal identified as BRD positive exhibited ? 2 clinical signs (i.e., eye or nasal discharge, cough, lethargy, rapid breathing, acute interstitial pneumonia, or acute upper respiratory syndrome and/or a rectal temperature &gt; 39.7°C). Heritability and genetic correlation estimates for categorical variable BRD, cortisol, IgG, IgG1, IgG2, and IL-8 were estimated from a sire model using ASREML. Heritability estimates were low to moderate for BRD (0.17 ± 0.08), cortisol (0.13 ± 0.05), IgG (0.15 ± 0.05), IgG1 (0.11 ± 0.05), IgG2 (0.24 ± 0.06), and IL-8 (0.30 ± 0.06). A moderate negative genetic correlation was determined between BRD and cortisol (rg = ?0.19 ± 0.32). Moderate positive correlations were found between BRD with IgG (0.42 ± 0.28), IgG1 (0.36 ± 0.32), and IL-8 (rg = 0.26 ± 0.26). Variation in the BRD phenotype and immune system traits suggested herd health improvement may be achieved through genetic selection. © 2016 American Society of Animal Science. All rights reserved

    Development of gaze aversion as disengagement from visual information

    Get PDF
    Older children, but not younger children, were found to look away more from the face of an interlocutor when answering difficult as opposed to easy questions. Similar results were found in earlier work with adults, who often avert their gaze during cognitively difficult tasks (A.M. Glenberg, J.L. Schroeder, & D.A. Robertson, 1998). Twenty-five 8-year-olds and 26 5-year-olds answered verbal reasoning and arithmetic questions of varying difficulty. The older children increased gaze aversion from the face of the adult questioner in response to both difficult verbal reasoning questions and difficult arithmetic questions. In contrast, younger children (5-year-olds) responded less consistently to cognitive difficulty. It is concluded that adultlike patterns of gaze aversion in response to cognitive difficulty are certainly acquired by 8 years of age. The implications of appropriate gaze aversion for children’s management of cognitive resources are considered

    Mapping gene associations in human mitochondria using clinical disease phenotypes

    Get PDF
    Nuclear genes encode most mitochondrial proteins, and their mutations cause diverse and debilitating clinical disorders. To date, 1,200 of these mitochondrial genes have been recorded, while no standardized catalog exists of the associated clinical phenotypes. Such a catalog would be useful to develop methods to analyze human phenotypic data, to determine genotype-phenotype relations among many genes and diseases, and to support the clinical diagnosis of mitochondrial disorders. Here we establish a clinical phenotype catalog of 174 mitochondrial disease genes and study associations of diseases and genes. Phenotypic features such as clinical signs and symptoms were manually annotated from full-text medical articles and classified based on the hierarchical MeSH ontology. This classification of phenotypic features of each gene allowed for the comparison of diseases between different genes. In turn, we were then able to measure the phenotypic associations of disease genes for which we calculated a quantitative value that is based on their shared phenotypic features. The results showed that genes sharing more similar phenotypes have a stronger tendency for functional interactions, proving the usefulness of phenotype similarity values in disease gene network analysis. We then constructed a functional network of mitochondrial genes and discovered a higher connectivity for non-disease than for disease genes, and a tendency of disease genes to interact with each other. Utilizing these differences, we propose 168 candidate genes that resemble the characteristic interaction patterns of mitochondrial disease genes. Through their network associations, the candidates are further prioritized for the study of specific disorders such as optic neuropathies and Parkinson disease. Most mitochondrial disease phenotypes involve several clinical categories including neurologic, metabolic, and gastrointestinal disorders, which might indicate the effects of gene defects within the mitochondrial system. The accompanying knowledgebase (http://www.mitophenome.org/) supports the study of clinical diseases and associated genes
    corecore