13 research outputs found
High Field magnetospectroscopy to probe the 1.4eV Ni color center in diamond
A magneto-optical study of the 1.4 eV Ni color center in boron-free synthetic
diamond, grown at high pressure and high temperature, has been performed in
magnetic fields up to 56 T. The data is interpreted using the effective spin
Hamiltonian of Nazar\'e, Nevers and Davies [Phys. Rev. B 43, 14196 (1991)] for
interstitial Ni with the electronic configuration and effective
spin . Our results unequivocally demonstrate the trigonal symmetry of
the defect which preferentially aligns along the [111] growth direction on the
(111) face, but reveal the shortcomings of the crystal field model for this
particular defect.Comment: 12 pages, 13 figures, submitted to PR
Unintentional high density p-type modulation doping of a GaAs/AlAs core-multi-shell nanowire
Achieving significant doping in GaAs/AlAs core/shell nanowires (NWs) is of
considerable technological importance but remains a challenge due to the
amphoteric behavior of the dopant atoms. Here we show that placing a narrow
GaAs quantum well in the AlAs shell effectively getters residual carbon
acceptors leading to an \emph{unintentional} p-type doping. Magneto-optical
studies of such a GaAs/AlAs core multi-shell NW reveal quantum confined
emission. Theoretical calculations of NW electronic structure confirm quantum
confinement of carriers at the core/shell interface due to the presence of
ionized carbon acceptors in the 1~nm GaAs layer in the shell.
Micro-photoluminescence in high magnetic field shows a clear signature of
avoided crossings of the Landau level emission line with the Landau
level TO phonon replica. The coupling is caused by the resonant hole-phonon
interaction, which points to a large 2D hole density in the structure.Comment: just published in Nano Letters
(http://pubs.acs.org/doi/full/10.1021/nl500818k
VO2 under hydrostatic pressure: Isostructural phase transition close to a critical end-point
12 pages, 12 figures, 2 Tables, submitted to Phys Rev BThe high-pressure behavior of monoclinic VO is revisited by a combination of Raman spectroscopy and X-ray diffraction on a single crystal under hydrostatic conditions at room temperature. A soft mode is observed up to P = 13.9(1) GPa. At this pressure, an isostructural phase transition between two monoclinic phases M and M' hinders this instability. The features of this transformation (no apparent volume jump) indicate that the compression at ambient temperature passes close to a critical point. An analysis based on the Landau theory of phase transitions gives a complete description of the P-T phase diagram. The M1' is characterized by spontaneous displacements of the oxygen sub-lattice without any strong modification of the VV dimers distances nor the twist angle of vanadium chains. The spontaneous displacements of oxygen and the spontaneous deformations of the (, ) plane follow the same quadratic dependence with pressure and scales with spontaneous shifts of the Raman phonons located at 225, 260 and 310 cm. Pressure-induced shifts of the Raman peaks allows for new assignment of several Raman modes. In particular, the A(1)+B(1) modes at 145 cm are identified as the vanadium displacive phonons. A second transformation in the metallic phase X, which is found triclinic (P) is observed starting at 32 GPa, with a wide coexistence region (up to 42 GPa). Upon decompression, phase X transforms, between 20 GPa and 3 GPa, to another phase that is neither the M' nor M phase. The structural transitions identified under pressure match with all the previously reported electronic modifications confirming that lattice and electronic degrees of freedom are closely coupled in this correlated material