154 research outputs found

    Variation in renal responses to exercise in the heat with progressive acclimatisation

    Get PDF
    Objectives To investigate changes in renal status from exercise in the heat with acclimatisation and to evaluate surrogates markers of Acute Kidney Injury. Design Prospective observational cohort study. Methods 20 male volunteers performed 60 min standardised exercise in the heat, at baseline and on four subsequent occasions during a 23-day acclimatisation regimen. Blood was sampled before and after exercise for serum creatinine, copeptin, interleukin-6, normetanephrine and cortisol. Fractional excretion of sodium was calculated for corresponding urine samples. Ratings of Perceived Exertion were reported every 5 min during exercise. Acute Kidney Injury was defined as serum creatinine rise ≥26.5 μmol L−1 or fall in estimated glomerular filtration rate >25%. Predictive values of each candidate marker for developing Acute Kidney Injury were determined by ROC analysis. Results From baseline to Day 23, serum creatinine did not vary at rest, but showed a significant (P < 0.05) reduction post-exercise (120 [102, 139] versus 102 [91, 112] μmol L−1). Acute Kidney Injury was common (26/100 exposures) and occurred most frequently in the unacclimatised state. Log-normalised fractional excretion of sodium showed a significant interaction (exercise by acclimatization day), with post-exercise values tending to rise with acclimatisation. Ratings of Perceived Exertion predicted AKI (AUC 0.76, 95% confidence interval 0.65–0.88), performing at least as well as biochemical markers. Conclusions Heat acclimatization is associated with reduced markers of renal stress and AKI incidence, perhaps due to improved regional perfusion. Acclimatisation and monitoring Ratings of Perceived Exertion are practical, non-invasive measures that could help to reduce renal injury from exercise in the heat

    Syndromic surveillance and heat wave morbidity: a pilot study based on emergency departments in France

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The health impacts of heat waves are serious and have prompted the development of heat wave response plans. Even when they are efficient, these plans are developed to limit the health effects of heat waves. This study was designed to determine relevant indicators related to health effects of heat waves and to evaluate the ability of a syndromic surveillance system to monitor variations in the activity of emergency departments over time. The study uses data collected during the summer 2006 when a new heat wave occurred in France.</p> <p>Methods</p> <p>Data recorded from 49 emergency departments since July 2004, were transmitted daily via the Internet to the French Institute for Public Health Surveillance. Items collected on patients included diagnosis (ICD10 codes), outcome, and age. Statistical t-tests were used to compare, for several health conditions, the daily averages of patients within different age groups and periods (whether 'on alert' or 'off alert').</p> <p>Results</p> <p>A limited number of adverse health conditions occurred more frequently during hot period: dehydration, hyperthermia, malaise, hyponatremia, renal colic, and renal failure. Over all health conditions, the total number of patients per day remained equal between the 'on alert' and 'off alert' periods (4,557.7/day vs. 4,511.2/day), but the number of elderly patients increased significantly during the 'on alert' period relative to the 'off alert' period (476.7/day vs. 446.2/day p < 0.05).</p> <p>Conclusion</p> <p>Our results show the interest to monitor specific indicators during hot periods and to focus surveillance efforts on the elderly. Syndromic surveillance allowed the collection of data in real time and the subsequent optimization of the response by public health agencies. This method of surveillance should therefore be considered as an essential part of efforts to prevent the health effects of heat waves.</p

    Impact of two recent extreme heat episodes on morbidity and mortality in Adelaide, South Australia: a case-series analysis

    Get PDF
    Extent: 9p.BACKGROUND: Extreme heatwaves occurred in Adelaide, South Australia, in the summers of 2008 and 2009. Both heatwaves were unique in terms of their duration (15 days and 13 days respectively), and the 2009 heatwave was also remarkable in its intensity with a maximum temperature reaching 45.7°C. It is of interest to compare the health impacts of these two unprecedented heatwaves with those of previous heatwaves in Adelaide. METHODS: Using case-series analysis, daily morbidity and mortality rates during heatwaves (≥35°C for three or more days) occurring in 2008 and 2009 and previous heatwaves occurring between 1993 and 2008 were compared with rates during all non-heatwave days (1 October to 31 March). Incidence rate ratios (IRRs) were established for ambulance call-outs, hospital admissions, emergency department presentations and mortality. Dose response effects of heatwave duration and intensity were examined. RESULTS: Ambulance call-outs during the extreme 2008 and 2009 events were increased by 10% and 16% respectively compared to 4.4% during previous heatwaves. Overall increases in hospital and emergency settings were marginal, except for emergency department presentations in 2008, but increases in specific health categories were observed. Renal morbidity in the elderly was increased during both heatwaves. During the 2009 heatwave, direct heat-related admissions increased up to 14-fold compared to a three-fold increase seen during the 2008 event and during previous heatwaves. In 2009, marked increases in ischaemic heart disease were seen in the 15-64 year age group. Only the 2009 heatwave was associated with considerable increases in total mortality that particularly affected the 15-64 year age group (1.37; 95% CI, 1.09, 1.71), while older age groups were unaffected. Significant dose-response relationships were observed for heatwave duration (ambulance, hospital and emergency setting) and intensity (ambulance and mortality). CONCLUSIONS: While only incremental increases in morbidity and mortality above previous findings occurred in 2008, health impacts of the 2009 heatwave stand out. These findings send a signal that the intense and long 2009 heatwave may have exceeded the capacity of the population to cope. It is important that risk factors contributing to the adverse health outcomes are investigated to further improve preventive strategies.Monika Nitschke, Graeme R. Tucker, Alana L. Hansen, Susan Williams, Ying Zhang and Peng B

    Emergency department visits, ambulance calls, and mortality associated with an exceptional heat wave in Sydney, Australia, 2011: a time-series analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>From January 30-February 6, 2011, New South Wales was affected by an exceptional heat wave, which broke numerous records. Near real-time Emergency Department (ED) and ambulance surveillance allowed rapid detection of an increase in the number of heat-related ED visits and ambulance calls during this period. The purpose of this study was to quantify the excess heat-related and all-cause ED visits and ambulance calls, and excess all-cause mortality, associated with the heat wave.</p> <p>Methods</p> <p>ED and ambulance data were obtained from surveillance and administrative databases, while mortality data were obtained from the state death registry. The observed counts were compared with the average counts from the same period from 2006/07 through 2009/10, and a Poisson regression model was constructed to calculate the number of excess ED visits, ambulance and deaths after adjusting for calendar and lag effects.</p> <p>Results</p> <p>During the heat wave there were 104 and 236 ED visits for heat effects and dehydration respectively, and 116 ambulance calls for heat exposure. From the regression model, all-cause ED visits increased by 2% (95% CI 1.01-1.03), all-cause ambulance calls increased by 14% (95% CI 1.11-1.16), and all-cause mortality increased by 13% (95% CI 1.06-1.22). Those aged 75 years and older had the highest excess rates of all outcomes.</p> <p>Conclusions</p> <p>The 2011 heat wave resulted in an increase in the number of ED visits and ambulance calls, especially in older persons, as well as an increase in all-cause mortality. Rapid surveillance systems provide markers of heat wave impacts that have fatal outcomes.</p

    The impact of heat waves on mortality in 9 European cities: results from the EuroHEAT project

    Get PDF
    BACKGROUND: The present study aimed at developing a standardized heat wave definition to estimate and compare the impact on mortality by gender, age and death causes in Europe during summers 1990-2004 and 2003, separately, accounting for heat wave duration and intensity. METHODS: Heat waves were defined considering both maximum apparent temperature and minimum temperature and classified by intensity, duration and timing during summer. The effect was estimated as percent increase in daily mortality during heat wave days compared to non heat wave days in people over 65 years. City specific and pooled estimates by gender, age and cause of death were calculated. RESULTS: The effect of heat waves showed great geographical heterogeneity among cities. Considering all years, except 2003, the increase in mortality during heat wave days ranged from + 7.6% in Munich to + 33.6% in Milan. The increase was up to 3-times greater during episodes of long duration and high intensity. Pooled results showed a greater impact in Mediterranean (+ 21.8% for total mortality) than in North Continental (+ 12.4%) cities. The highest effect was observed for respiratory diseases and among women aged 75-84 years. In 2003 the highest impact was observed in cities where heat wave episode was characterized by unusual meteorological conditions. CONCLUSIONS: Climate change scenarios indicate that extreme events are expected to increase in the future even in regions where heat waves are not frequent. Considering our results prevention programs should specifically target the elderly, women and those suffering from chronic respiratory disorders, thus reducing the impact on mortality

    Alterations in the human lung proteome with lipopolysaccharide

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recombinant human activated protein C (rhAPC) is associated with improved survival in high-risk patients with severe sepsis; however, the effects of both lipopolysaccharide (LPS) and rhAPC on the bronchoalveolar lavage fluid (BALF) proteome are unknown.</p> <p>Methods</p> <p>Using differential in gel electrophoresis (DIGE) we identified changes in the BALF proteome from 10 healthy volunteers given intrapulmonary LPS in one lobe and saline in another lobe. Subjects were randomized to pretreatment with saline or rhAPC.</p> <p>Results</p> <p>An average of 255 protein spots were detected in each proteome. We found 31 spots corresponding to 8 proteins that displayed abundance increased or decreased at least 2-fold after LPS. Proteins that decreased after LPS included surfactant protein A, immunoglobulin J chain, fibrinogen-γ, α<sub>1</sub>-antitrypsin, immunoglobulin, and α<sub>2</sub>-HS-glycoprotein. Haptoglobin increased after LPS-treatment. Treatment with rhAPC was associated with a larger relative decrease in immunoglobulin J chain, fibrinogen-γ, α<sub>1</sub>-antitrypsin, and α<sub>2</sub>-HS-glycoprotein.</p> <p>Conclusion</p> <p>Intrapulmonary LPS was associated with specific protein changes suggesting that the lung response to LPS is more than just a loss of integrity in the alveolar epithelial barrier; however, pretreatment with rhAPC resulted in minor changes in relative BALF protein abundance consistent with its lack of affect in ALI and milder forms of sepsis.</p

    Human malarial disease: a consequence of inflammatory cytokine release

    Get PDF
    Malaria causes an acute systemic human disease that bears many similarities, both clinically and mechanistically, to those caused by bacteria, rickettsia, and viruses. Over the past few decades, a literature has emerged that argues for most of the pathology seen in all of these infectious diseases being explained by activation of the inflammatory system, with the balance between the pro and anti-inflammatory cytokines being tipped towards the onset of systemic inflammation. Although not often expressed in energy terms, there is, when reduced to biochemical essentials, wide agreement that infection with falciparum malaria is often fatal because mitochondria are unable to generate enough ATP to maintain normal cellular function. Most, however, would contend that this largely occurs because sequestered parasitized red cells prevent sufficient oxygen getting to where it is needed. This review considers the evidence that an equally or more important way ATP deficency arises in malaria, as well as these other infectious diseases, is an inability of mitochondria, through the effects of inflammatory cytokines on their function, to utilise available oxygen. This activity of these cytokines, plus their capacity to control the pathways through which oxygen supply to mitochondria are restricted (particularly through directing sequestration and driving anaemia), combine to make falciparum malaria primarily an inflammatory cytokine-driven disease
    corecore