16,334 research outputs found

    Simple model for quantum general relativity from loop quantum gravity

    Full text link
    New progress in loop gravity has lead to a simple model of `general-covariant quantum field theory'. I sum up the definition of the model in self-contained form, in terms accessible to those outside the subfield. I emphasize its formulation as a generalized topological quantum field theory with an infinite number of degrees of freedom, and its relation to lattice theory. I list the indications supporting the conjecture that the model is related to general relativity and UV finite.Comment: 8 pages, 3 figure

    Integrability of anisotropic and homogeneous Universes in scalar-tensor theory of gravitation

    Full text link
    In this paper, we develop a method based on the analysis of the Kovalewski exponents to study the integrability of anisotropic and homogeneous Universes. The formalism is developed in scalar-tensor gravity, the general relativistic case appearing as a special case of this larger framework. Then, depending on the rationality of the Kovalewski exponents, the different models, both in the vacuum and in presence of a barotropic matter fluid, are classified, and their integrability is discussed.Comment: 16 pages, no figure, accepted in CQ

    Bel-Robinson tensor and dominant energy property in the Bianchi type I Universe

    Full text link
    Within the framework of Bianchi type-I space-time we study the Bel-Robinson tensor and its impact on the evolution of the Universe. We use different definitions of the Bel-Robinson tensor existing in the literature and compare the results. Finally we investigate the so called "dominant super-energy property" for the Bel-Robinson tensor as a generalization of the usual dominant energy condition for energy momentum tensors. Keywords: Bianchi type I model, super-energy tensors Pacs: 03.65.Pm and 04.20.HaComment: 15 pages, revised version, no figure

    Field-induced quantum critical route to a Fermi liquid in high-temperature superconductors

    Full text link
    In high transition temperature (T_c) superconductivity, charge doping is a natural tuning parameter that takes copper oxides from the antiferromagnet to the superconducting region. In the metallic state above T_c the standard Landau's Fermi-liquid theory of metals as typified by the temperature squared (T^2) dependence of resistivity appears to break down. Whether the origin of the non-Fermi-liquid behavior is related to physics specific to the cuprates is a fundamental question still under debate. We uncover a new transformation from the non-Fermi- to a standard Fermi-liquid state driven not by doping but by magnetic field in the overdoped high-T_c superconductor Tl_2Ba_2CuO_{6+x}. From the c-axis resistivity measured up to 45 T, we show that the Fermi-liquid features appear above a sufficiently high field which decreases linearly with temperature and lands at a quantum critical point near the superconductivity's upper critical field -- with the Fermi-liquid coefficient of the T^2 dependence showing a power-law diverging behavior on the approach to the critical point. This field-induced quantum criticality bears a striking resemblance to that in quasi-two dimensional heavy-Fermion superconductors, suggesting a common underlying spin-related physics in these superconductors with strong electron correlations.Comment: 6 pages, 4 figure

    Fermi surface evolution through a heavy fermion superconductor-to-antiferromagnet transition: de Haas-van Alphen effect in Cd-substituted CeCoIn5_5

    Full text link
    We report the results of de-Haas-van-Alphen (dHvA) measurements in Cd doped CeCoIn5_5 and LaCoIn5_5. Cd doping is known to induce an antiferromagnetic order in the heavy fermion superconductor CeCoIn5_5, whose effect can be reversed with applied pressure. We find a slight but systematic change of the dHvA frequencies with Cd doping in both compounds, reflecting the chemical potential shift due to the addition of holes. The frequencies and effective masses are close to those found in the nominally pure compounds with similar changes apparent in the Ce and La compounds with Cd substitution. We observe no abrupt changes to the Fermi surface in the high field paramagnetic state for xxcx \sim x_c corresponding to the onset of antiferromagnetic ordering at H=0 in CeCo(In1x_{1-x}Cdx_x)5_5. Our results rule out ff-electron localization as the mechanism for the tuning of the ground state in CeCoIn5_5 with Cd doping

    The properties of the clumpy torus and BLR in the polar-scattered Seyfert 1 galaxy ESO 323-G77 through X-ray absorption variability

    Full text link
    We report results from multi-epoch X-ray observations of the polar-scattered Seyfert 1 galaxy ESO 323-G77. The source exhibits remarkable spectral variability from months to years timescales. The observed spectral variability is entirely due to variations of the column density of a neutral absorber towards the intrinsic nuclear continuum. The column density is generally Compton-thin ranging from a few times 1022^{22} cm2^{-2} to a few times 1023^{23} cm2^{-2}. However, one observation reveals a Compton-thick state with column density of the order of 1.5 ×\times 1024^{24} cm2^{-2}. The observed variability offers a rare opportunity to study the properties of the X-ray absorber(s) in an active galaxy. We identify variable X-ray absorption from two different components, namely (i) a clumpy torus whose individual clumps have a density of \leq 1.7 ×\times 108^8 cm3^{-3} and an average column density of \sim 4 ×\times 1022^{22} cm2^{-2}, and (ii) the broad line region (BLR), comprising individual clouds with density of 0.1-8 ×\times 109^9 cm3^{-3} and column density of 1023^{23}-1024^{24} cm2^{-2}. The derived properties of the clumpy torus can also be used to estimate the torus half-opening angle, which is of the order of 47 ^\circ. We also confirm the previously reported detection of two highly ionized warm absorbers with outflow velocities of 1000-4000 km s1^{-1}. The observed outflow velocities are consistent with the Keplerian/escape velocity at the BLR. Hence, the warm absorbers may be tentatively identified with the warm/hot inter-cloud medium which ensures that the BLR clouds are in pressure equilibrium with their surroundings. The BLR line-emitting clouds may well be the cold, dense clumps of this outflow, whose warm/hot phase is likely more homogeneous, as suggested by the lack of strong variability of the warm absorber(s) properties during our monitoring.Comment: 15 pages, 4 tables, and 9 figures. Accepted for publication in MNRA

    Ionization structure and Fe Kα\alpha energy for irradiated accretion disks

    Full text link
    We study the radial ionization structure at the surface of an X-ray illuminated accretion disk. We plot the expected iron Kα\alpha line energy as a function of the Eddington ratio and of the distance of the emitting matter from the central source, for a non-rotating and a maximally-rotating black hole. We compare the predicted disk line energies with those measured in an archival sample of active galactic nuclei observed with {\it Chandra}, {\it XMM-Newton} and {\it Suzaku}, and discuss whether the line energies are consistent with the radial distances inferred from reverberation studies. We also suggest using rapidly-variable iron Kα\alpha lines to estimate the viscosity parameter of an accretion disk. There is a forbidden region in the line energy versus Eddington ratio plane, at low Eddington ratios, where an accretion disk cannot produce highly-ionized iron Kα\alpha lines. If such emission is observed in low-Eddington-ratio sources, it is either coming from a highly-ionized outflow, or is a blue-shifted component from fast-moving neutral matter.Comment: 5 pages, 2 figures, accepted by MNRA

    Spinning Loop Black Holes

    Full text link
    In this paper we construct four Kerr-like spacetimes starting from the loop black hole Schwarzschild solutions (LBH) and applying the Newman-Janis transformation. In previous papers the Schwarzschild LBH was obtained replacing the Ashtekar connection with holonomies on a particular graph in a minisuperspace approximation which describes the black hole interior. Starting from this solution, we use a Newman-Janis transformation and we specialize to two different and natural complexifications inspired from the complexifications of the Schwarzschild and Reissner-Nordstrom metrics. We show explicitly that the space-times obtained in this way are singularity free and thus there are no naked singularities. We show that the transformation move, if any, the causality violating regions of the Kerr metric far from r=0. We study the space-time structure with particular attention to the horizons shape. We conclude the paper with a discussion on a regular Reissner-Nordstrom black hole derived from the Schwarzschild LBH and then applying again the Newmann-Janis transformation.Comment: 18 pages, 18 figure
    corecore