166 research outputs found

    ArgoNeuT, a liquid argon time projection chamber in a low energy neutrino beam

    Full text link
    ArgoNeuT (Argon Neutrino Test), a NSF/DOE project at Fermilab, is the first LArTPC to go in a low energy neutrino beam and just the second LArTPC to go in a neutrino beam ever. ArgoNeuT sits just upstream of the on-axis MINOS near detector in the NuMI beamline, about 1 km from the target station and 100 m underground. The detector features a 47X40X90 cm (169 L) active volume TPC with a fully contained recirculation and purification system. Among other physics, ArgoNeuT will measure the charged-current quasi-elastic (anti-) neutrino cross section on argon at an energy of ~3 GeV.Comment: 3 pages, 2 figures, to appear in the proceedings of the 11th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2009), Rome, Italy, 1-5 July 200

    Zeeman slowers made simple with permanent magnets in a Halbach configuration

    Full text link
    We describe a simple Zeeman slower design using permanent magnets. Contrary to common wire-wound setups no electric power and water cooling are required. In addition, the whole system can be assembled and disassembled at will. The magnetic field is however transverse to the atomic motion and an extra repumper laser is necessary. A Halbach configuration of the magnets produces a high quality magnetic field and no further adjustment is needed. After optimization of the laser parameters, the apparatus produces an intense beam of slow and cold 87Rb atoms. With a typical flux of 1 - 5 \times 10^10 atoms/s at 30 ms^-1, our apparatus efficiently loads a large magneto-optical trap with more than 10^10 atoms in one second, which is an ideal starting point for degenerate quantum gases experiments.Comment: 8+6 pages (article + appendices: calculation details, probe and oven description, pictures), 18 figures, supplementary material (movie, Mathematica programs and technical drawings

    ArgoNeuT and the Neutrino-Argon Charged Current Quasi-Elastic Cross Section

    Full text link
    ArgoNeuT, a Liquid Argon Time Projection Chamber in the NuMI beamline at Fermilab, has recently collected thousands of neutrino and anti-neutrino events between 0.1 and 10 GeV. The experiment will, among other things, measure the cross section of the neutrino and anti-neutrino Charged Current Quasi-Elastic interaction and analyze the vertex activity associated with such events. These topics are discussed along with ArgoNeuT's automated reconstruction software, currently capable of fully reconstructing the muon and finding the event vertex in neutrino interactions.Comment: 6 pages, 4 figures, presented at the International Nuclear Physics Conference, Vancouver, Canada, July 4-9, 2010, to be published in Journal of Physics: Conference Series (JPCS

    Model of Enterpreneurship and Social-cultural and Market Orientation of Small Business Owners in Poland

    Get PDF
    In the development of SMEs in Poland crucial meaning is legislation, steadily adapted to EU regulations, especially to the European Charter for Small Enterprises. Research conducted in Poland by many authors provide data for doing so, to confirm the hypothesis that among small businesses a vital role in shaping their work situation did not continue to play the market mechanisms and orientations, but mainly socio-cultural factors.W rozwoju MŚP w Polsce podstawowe znaczenie mają również uregulowania prawne, systematycznie dostosowywane do regulacji unijnych, zwłaszcza zaś do Europejskiej Karty Małych Przedsiębiorstw. Badania prowadzone w Polsce przez wielu autorów dostarczają danych ku temu, by potwierdzić tezę, że wśród drobnych przedsiębiorców decydującą rolę w kształtowaniu ich sytuacji pracy odgrywają nadal nie mechanizmy i orientacje rynkowe, ale przede wszystkim czynniki społeczno-kulturowe

    Neutrino oscillation physics at an upgraded CNGS with large next generation liquid Argon TPC detectors

    Get PDF
    The determination of the missing Ue3U_{e3} element (magnitude and phase) of the PMNS neutrino mixing matrix is possible via the detection of \numu\to\nue oscillations at a baseline LL and energy EE given by the atmospheric observations, corresponding to a mass squared difference E/LΔm22.5×103eV2E/L \sim \Delta m^2\simeq 2.5\times 10^{-3} eV^2. While the current optimization of the CNGS beam provides limited sensitivity to this reaction, we discuss in this document the physics potential of an intensity upgraded and energy re-optimized CNGS neutrino beam coupled to an off-axis detector. We show that improvements in sensitivity to θ13\theta_{13} compared to that of T2K and NoVA are possible with a next generation large liquid Argon TPC detector located at an off-axis position (position rather distant from LNGS, possibly at shallow depth). We also address the possibility to discover CP-violation and disentangle the mass hierarchy via matter effects. The considered intensity enhancement of the CERN SPS has strong synergies with the upgrade/replacement of the elements of its injector chain (Linac, PSB, PS) and the refurbishing of its own elements, envisioned for an optimal and/or upgraded LHC luminosity programme.Comment: 37 pages, 20 figure

    Development and operational experience of magnetic horn system for T2K experiment

    Get PDF
    A magnetic horn system to be operated at a pulsed current of 320 kA and to survive high-power proton beam operation at 750 kW was developed for the T2K experiment. The first set of T2K magnetic horns was operated for over 12 million pulses during the four years of operation from 2010 to 2013, under a maximum beam power of 230 kW, and 6.63×10206.63\times10^{20} protons were exposed to the production target. No significant damage was observed throughout this period. This successful operation of the T2K magnetic horns led to the discovery of the νμνe\nu_{\mu}\rightarrow\nu_e oscillation phenomenon in 2013 by the T2K experiment. In this paper, details of the design, construction, and operation experience of the T2K magnetic horns are described.Comment: 22 pages, 40 figures, also submitted to Nuclear Instrument and Methods in Physics Research,
    corecore