75 research outputs found
Seasonal variations of concentrations and optical properties of water soluble HULIS collected in urban environments
Major contributors to the organic aerosol include water-soluble macromolecular compounds (e.g. HULIS<sub>WS</sub>: Water Soluble Humic LIke Substances). The nature and sources of HULIS<sub>WS</sub> are still largely unknown. This work is based on a monitoring in six different French cities performed during summer and winter seasons. HULIS<sub>WS</sub> analysis was performed with a selective method of extraction complemented by carbon quantification. UV spectroscopy was also applied for their chemical characterisation. HULIS<sub>WS</sub> carbon represent an important contribution to the organic aerosol mass in summer and winter, as it accounts for 12–22% of Organic Carbon and 34–40% of Water Soluble Organic Carbon. We found strong differences in the optical properties (specific absorbance at 250, 272, 280 nm and E2/E3 ratio) and therefore in the chemical structure between HULIS<sub>WS</sub> from samples of summer- and wintertime. These differences highlight different processes responsible for emissions and formation of HULIS<sub>WS</sub> according to the season, namely biomass burning in winter, and secondary processes in summer. Specific absorbance can also be considered as a rapid and useful indicator of the origin of HULIS<sub>WS</sub> in urban environment
Reliable Self-Deployment of Cloud Applications
International audienceCloud applications consist of a set of interconnected software elements distributed over several virtual machines, themselves hosted on remote physical servers. Most existing solutions for deploying such applications require human intervention to configure parts of the system, do not respect functional dependencies among elements that must be respected when starting them, and do not handle virtual machine failures that can occur when deploying an application. This paper presents a self-deployment protocol that was designed to automatically configure a set of software elements to be deployed on different virtual machines. This protocol works in a decentralized way, i.e., there is no need for a centralized server. It also starts the software elements in a certain order, respecting important architectural invariants. This protocol supports virtual machine and network failures, and always succeeds in deploying an application when faced with a finite number of failures. Designing such highly parallel management protocols is difficult, therefore formal modeling techniques and verification tools were used for validation purposes. The protocol was implemented in Java and was used to deploy industrial applications
Insights into the secondary fraction of the organic aerosol in a Mediterranean urban area: Marseille
A comprehensive aerosol characterization was conducted at Marseille during
summer, including organic (OC) and elemental carbon (EC), major ionic
species, radiocarbon (<sup>14</sup>C), water-soluble OC and HULIS (HUmic LIke
Substances), elemental composition and primary and secondary organic
markers. This paper is the second paper of a two-part series that uses this
dataset to investigate the sources of Organic Aerosol (OA). While the first
paper investigates the primary sources (El Haddad et al., 2010), this second
paper focuses on the secondary fraction of the organic aerosol.
<br><br>
In the context of overall OC mass balance, primary OC (POC) contributes on
average for only 22% and was dominated by vehicular emissions accounting
on average for 17% of OC. As a result, 78% of OC mass cannot be
attributed to the major primary sources and remains un-apportioned.
Radiocarbon measurements suggest that more than 70% of this fraction is
of non-fossil origin, assigned predominantly to biogenic secondary organic
carbon (BSOC). Therefore, contributions from three traditional BSOC
precursors, isoprene, -pinene and β-caryophyllene, were
considered. These were estimated using the ambient concentrations of
Secondary Organic Aerosol (SOA) markers from each precursor and
laboratory-derived marker mass fraction factors.
<br><br>
Secondary organic markers derived from isoprene photo-oxidation (ie:
2-methylglyceric acid and 2-methyltetrols) do not exhibit the same temporal
trends. This variability was assigned to the influence of NO<sub>x</sub>
concentration on their formation pathways and to their potential decay by
further processing in the atmosphere. The influence of changes in isoprene
chemistry on assessment of isoprene SOC contribution was evaluated
explicitly. The results suggest a 60-fold variation between the different
estimates computed using different isoprene SOC markers, implying that the
available profiles do not reflect the actual isoprene SOC composition
observed in Marseille.
<br><br>
Using the marker-based approach, the aggregate contribution from traditional
BSOC was estimated at only 4.2% of total OC and was dominated by α-pinene
SOC accounting on average for 3.4% of OC. As a result, these
estimates underpredict the inexplicably high loadings of OC. This
underestimation can be associated with (1) uncertainties underlying the
marker-based approach, (2) presence of other SOC precursors and (3) further
processing of fresh SOC, as indicated by organosulfates (RSO<sub>4</sub>H) and
HUmic LIke Substances (HULIS) measurements
Early Detection, Diagnosis and Intervention Services for Young Children with Autism Spectrum Disorder in the European Union (ASDEU): Family and Professional Perspectives
Early services for ASD need to canvas the opinions of both parents and professionals. These opinions are seldom compared in the same research study. This study aims to ascertain the views of families and professionals on early detection, diagnosis and intervention services for young children with ASD. An online survey compiled and analysed data from 2032 respondents across 14 European countries (60.9% were parents; 39.1% professionals). Using an ordinal scale from 1 to 7, parents’ opinions were more negative (mean = 4.6; SD 2.2) compared to those of professionals (mean = 4.9; SD 1.5) when reporting satisfaction with services. The results suggest services should take into account child’s age, delays in accessing services, and active stakeholders’ participation when looking to improve services
Interspecific introgression mediates adaptation to whole genome duplication
Adaptive gene flow is a consequential phenomenon across all kingdoms. While recognition is increasing, examples lack of bidirectional gene flow mediating adaptations at loci that manage core processes. We previously discovered concerted molecular changes among interacting members of meiotic machinery controlling crossover number upon adaptation to whole genome duplication (WGD) in Arabidopsis arenosa. Here we conduct a population genomic study to test the hypothesis that adaptation to WGD has been mediated by adaptive gene flow between A. arenosa and A. lyrata. We find that A. lyrata underwent WGD more recently than A. arenosa, suggesting that pre-adapted alleles have rescued nascent A. lyrata, but we also detect gene flow in the opposite direction at functionally interacting loci under the most extreme levels of selection. These data indicate that bidirectional gene flow allowed for survival after WGD and that the merger of these species is greater than the sum of their parts
The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges
- …