717 research outputs found

    An explainable convolutional autoencoder model for unsupervised change detection

    Get PDF
    Abstract. Transfer learning methods reuse a deep learning model developed for a task on another task. Such methods have been remarkably successful in a wide range of image processing applications. Following the trend, few transfer learning based methods have been proposed for unsupervised multi-temporal image analysis and change detection (CD). Inspite of their success, the transfer learning based CD methods suffer from limited explainability. In this paper, we propose an explainable convolutional autoencoder model for CD. The model is trained in: 1) an unsupervised way using, as the bi-temporal images, patches extracted from the same geographic location; 2) a greedy fashion, one encoder and decoder layer pair at a time. A number of features relevant for CD is chosen from the encoder layer. To build an explainable model, only selected features from the encoder layer is retained and the rest is discarded. Following this, another encoder and decoder layer pair is added to the model in similar fashion until convergence. We further visualize the features to better interpret the learned features. We validated the proposed method on a Landsat-8 dataset obtained in Spain. Using a set of experiments, we demonstrate the explainability and effectiveness of the proposed model

    Scalable methodology for the photovoltaic solar energy potential assessment based on available roof surface area: further improvements by ortho-image analysis and application to Turin (Italy)

    Get PDF
    The ongoing rush of the UE member states to the 2020 overall targets on the national renewable energy share (see Directive 2009/28/EC), is propelling the large exploitation of the solar resource for the electricity production. However, the incentives to the large employment of PV solar modules and the relative perspective profits, are often cause of massive ground-mounted installations. These kind of installations are obviously the preferred solution by the investors for their high economic yields, but their social impact should be also considered. Over the Piedmont Region for instance, the large proliferation of PV farms is jeopardizing wide agricultural terrains and turistic areas, therefore the policy of the actual administration is to encourage the use of integrated systems in place of massive installations. For these reasons, an effort to demonstrate that the distributed residential generation can play a primary role in the market is mandatory. In our previous work “Scalable methodology for the photovoltaic solar energy potential assessment based on available roof surface area: application to Piedmont Region (Italy)”, we already proposed a basic methodology for the evaluation of the roof-top PV system potential. However, despite the total roof surface has been computed on a given cartographical dataset, the real roof surface available for PV installations has been evaluated through the assumption of representative roofing typologies and empirical coefficients found via visual inspection of satellite images. In order to overcome this arbitrariness and refine our methodology, in the present paper we present a brand new algorithm to compute the available roof surface, based on the systematical analysis and processing of aerial georeferenced images (ortho-images). The algorithm, fully developed in MATLAB®, accounts for shadow, roof surface available (bright and not), roof features (i.e. chimneys or walls) and azimuthal angle of the eventual installation. Here we apply the algorithm to the whole city of Turin, and process more than 60,000 buildings. The results achieved are finally compared with our previous work and the updated PV potential assessment is consequently discussed

    Effect of water nanoconfinement on the dynamic properties of paramagnetic colloidal complexes

    Get PDF
    The anomalous behavior of confined water at the nanoscale has remarkable implications in a number of nanotechnological applications. In this work, we analyze the effect of water self-diffusion on the dynamic properties of a solvated gadolinium-based paramagnetic complex, typically used for contrast enhancement in magnetic resonance imaging. In particular, we examine the effect of silica-based nanostructures on water behavior in the proximity of the paramagnetic complex via atomistic simulations, and interpret the resulting tumbling dynamics in the light of the local solvent modification based on the Lipari-Szabo formalism and of the fractional Stokes-Einstein relation. It is found that the local water confinement induces an increased "stiffness" on the outer sphere of the paramagnetic complex, which eventually reduces its tumbling properties. These model predictions are found to explain well the relaxivity enhancement observed experimentally by confining paramagnetic complexes into porous nanoconstructs, and thus offer mechanistic guidelines to design improved contrast agents for imaging applications

    Nano-metering of Solvated Biomolecules Or Nanoparticles from Water Self-Diffusivity in Bio-inspired Nanopores

    Get PDF
    Taking inspiration from the structure of diatom algae frustules and motivated by the need for new detecting strategies for emerging nanopollutants in water, we analyze the potential of nanoporous silica tablets as metering devices for the concentration of biomolecules or nanoparticles in water. The concept relies on the different diffusion behavior that water molecules exhibit in bulk and nanoconfined conditions, e.g., in nanopores. In this latter situation, the self-diffusion coefficient of water reduces according to the geometry and surface properties of the pore and to the concentration of suspended biomolecules or nanoparticles in the pore, as extensively demonstrated in a previous study. Thus, for a given pore-liquid system, the self-diffusivity of water in nanopores filled with biomolecules or nanoparticles provides an indirect measure of their concentration. Using molecular dynamics and previous results from the literature, we demonstrate the correlation between the self-diffusion coefficient of water in silica nanopores and the concentration of proteins or nanoparticles contained therein. Finally, we estimate the time required for the nanoparticles to fill the nanopores, in order to assess the practical feasibility of the overall nano-metering protocol. Results show that the proposed approach may represent an alternative method for assessing the concentration of some classes of nanopollutants or biomolecules in water

    Modelos de transferência de metal pesado na cana-de-açúcar adubada com composto de lixo urbano.

    Get PDF
    A pesquisa aborda a reciclagem do composto de lixo urbano (CLU) como fertilizante alternativo na cana-de-açúcar e como solução social e ambiental ao acúmulo de resíduos sólidos nos centros urbanos. Utilizou-se da modelagem matemática para conhecer a dinâmica dos metais pesados, visando ao estabelecimento de critérios e procedimentos para o uso seguro do CLU, limitado pela quantidade desses elementos. Foram construídos modelos compartimentais a partir de dados de experimentos em condições controladas e parcialmente validados com dados de campo. Esse modelo descreveu a transferência de metais pesados no sistema solo-raiz-parte aérea para a cana-de-açúcar. Pôde-se concluir, pelas condições desta pesquisa, que o metal mais preocupante foi o níquel, pois demora, aproximadamente, três anos para ser atenuado no solo e chega em maior quantidade na parte aérea. Quanto aos fatores argila, óxidos e pH do solo, notou-se que, nos solos de maior poder tampão, a passagem da maioria dos metais foi mais lenta. Esse modelo pode tornar-se importante aliado na definição de leis de utilização do CLU, visando à não-contaminação ambiental, redução no acúmulo de lixo e de custos de produção

    A Force-Feedback Exoskeleton for Upper-Limb Rehabilitation in Virtual Reality

    Get PDF
    This paper presents the design and the clinical validation of an upper-limb force-feedback exoskeleton, the L-EXOS, for robotic-assisted rehabilitation in virtual reality (VR). The L-EXOS is a five degrees of freedom exoskeleton with a wearable structure and anthropomorphic workspace that can cover the full range of motion of human arm. A specific VR application focused on the reaching task was developed and evaluated on a group of eight post-stroke patients, to assess the efficacy of the system for the rehabilitation of upper limb. The evaluation showed a significant reduction of the performance error in the reaching task (paired t-test, p < 0.02

    On the correct surface stress for the prediction of the wind wave field and the storm surge in the Northern Adriatic Sea

    Get PDF
    This paper discusses which formulation of the surface stress over the sea determines the most accurate prediction of the wind wave field and storm surge in the Northern Adriatic Sea. The study shows that the results of the storm surge and wind wave models, when compared to the available observations, can be used for the validation of the surface stress and of the expression adopted for the ssr (sea surface roughness). The results are representative of short fetch and young wind sea conditions. The agreement between the results and the measurements shows the feasibility of the wind wave and storm surge predictions in the Adriatic Sea and supports the dependence of the ssr, and, therefore, of the surface stress, on the spectrum of the surface wave

    A stable graph-based representation for object recognition through high-order matching

    Get PDF
    Many Object recognition techniques perform some flavour of point pattern matching between a model and a scene. Such points are usually selected through a feature detection algorithm that is robust to a class of image transformations and a suitable descriptor is computed over them in order to get a reliable matching. Moreover, some approaches take an additional step by casting the correspondence problem into a matching between graphs defined over feature points. The motivation is that the relational model would add more discriminative power, however the overall effectiveness strongly depends on the ability to build a graph that is stable with respect to both changes in the object appearance and spatial distribution of interest points. In fact, widely used graph-based representations, have shown to suffer some limitations, especially with respect to changes in the Euclidean organization of the feature points. In this paper we introduce a technique to build relational structures over corner points that does not depend on the spatial distribution of the features

    Adaptive mechanisms in dogs adopted from shelters: A behavioral assessment of the use of a synthetic analogue of the canine appeasing pheromone

    Get PDF
    Adaptation to a new socio-environment might represent a very hard step for sheltered dogs, because of a higher level of difficulty in coping with unfamiliar conditions. The adaptation process can be logically and scientifically related to the concept of stress and welfare, limiting the success rate of rehoming. A synthetic analogue of the Dog Appeasing Pheromone (Dog Appeasing Pheromone, DAP) is reported to have a reassuring effect in puppies and adult dogs in a wide variety of stressful situations. The aim of the current study was to investigate the effects of DAP (Adaptil® Ceva Vetem S.p.A.) in dogs re-homed from rescue shelters. The study was designed as a prospective open-label clinical trial. Significant decreases were observed in adult dogs for wandering in the house restlessly (p=0.022) and hiding fearfully in protected corners (p=0.033), whereas in puppies treatment with DAP significantly (p&lt;0.05) improved the reaction towards unfamiliar dogs (p=0.048) and wandering in the house restlessly (p=0.022). In both adults and puppies a significant improvement in interaction with owners was observed. In particular, "looking continuously for the owners" and "following the owners everywhere like a shadow" were significantly improved (p=0.0012 and 0.0016 respectively) in adult dogs. Separation reactions revealed a significant decrease (p&lt;0.05) and in puppies the tendency to vocalize in absence of the owner was also significantly reduced (p=0.0029). Both adults and puppies showed a decreased tendency to wake suddenly in the night (p=0.024 and p=0.026 respectively) and wander around the home (p=0.012 and p=0.026 respectively). In contrast, for house-training no significant difference was reported in adults, whereas for puppies there was a significant decrease (p&lt;0.05) in the mean scores for urination and/or defecation wherever in the house and after coming home. Data regarding the overall assessment suggested a significant improvement in all the efficacy variables considered in the study. The analysis of owners' degree of satisfaction at the final visit showed that DAP treatment was considered successful by 84.4 % of owners. Results suggest that DAP might improve dogs' adaptability throughout the first weeks following adoption and can be considered a useful tool for reducing stress in re-homed dogs

    Etiological diagnosis, prognostic significance and role of electrophysiological study in patients with Brugada ECG and syncope.

    Get PDF
    BACKGROUND: Syncope is considered a risk factor for life-threatening arrhythmias in Brugada patients. Distinguishing a benign syncope from one due to ventricular arrhythmias is often difficult, unless an ECG is recorded during the episode. Aim of the study was to analyze the characteristics of syncopal episodes in a large population of Brugada patients and evaluate the role of electrophysiological study (EPS) and the prognosis in the different subgroups. METHODS AND RESULTS: One hundred ninety-five Brugada patients with history of syncope were considered. Syncope were classified as neurally mediated (group 1, 61%) or unexplained (group 2, 39%) on the basis of personal and family history, clinical features, triggers, situations, associated signs, concomitant therapy. Most patients underwent EPS; they received ICD or implantable loop-recorder on the basis of the result of investigations and physician's judgment. At 62±45months of mean follow-up, group 1 showed a significantly lower incidence of arrhythmic events (2%) as compared to group 2 (9%, p<0.001). Group 2 patients with positive EPS showed the highest risk of arrhythmic events (27%). No ventricular events occurred in subjects with negative EPS. CONCLUSION: Etiological definition of syncope in Brugada patients is important, as it allows identifying two groups with different outcome. Patients with unexplained syncope and ventricular fibrillation induced at EPS have the highest risk of arrhythmic events. Patients presenting with neurally mediated syncope showed a prognosis similar to that of the asymptomatic and the role of EPS in this group is unproven
    corecore