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E�ect of water nanocon�nement on the dynamic prop-

erties of paramagnetic colloidal complexes

Luca Bergamasco,a Matteo Morciano,a and Matteo Fasanoa,∗

The anomalous behavior of con�ned water at the nanoscale has remarkable implications in a number

of nanotechnological applications. In this work, we analyze the e�ect of water self-di�usion on the

dynamic properties of a solvated gadolinium-based paramagnetic complex, typically used for contrast

enhancement in magnetic resonance imaging. In particular, we examine the e�ect of silica-based

nanostructures on water behavior in the proximity of the paramagnetic complex via atomistic simu-

lations, and interpret the resulting tumbling dynamics in the light of the local solvent modi�cation

based on the Lipari-Szabo formalism and of the fractional Stokes-Einstein relation. It is found that

the local water con�nement induces an increased "sti�ness" on the outer sphere of the paramagnetic

complex, which eventually reduces its tumbling properties. These model predictions are found to ex-

plain well the relaxivity enhancement observed experimentally by con�ning paramagnetic complexes

into porous nanocontructs, and thus o�er mechanistic guidelines to design improved contrast agents

for imaging applications.

Introduction

Confined molecular liquids have peculiar properties which are
significantly different from those in bulk conditions.1–3 Thorough
understanding of these features is key to enable optimization of
nanoscale devices for a number of different applications, such
as membrane separation for desalination and filtration, oil and
gas production, energy conversion and storage or DNA sequenc-
ing.4–11 Bioengineering and nanomedicine are certainly among
those fields where the anomalous behavior of nanoconfined liq-
uids, water in particular, can be exploited to improve controlled
drug delivery for therapeutics and imaging techniques.12–16

Magnetic Resonance Imaging (MRI) is a technique used in the
medical field, which allows to obtain accurate images of biolog-
ical matter in the human body. MRI relies on the principles of
the Nuclear Magnetic Resonance (NMR), which is a spectroscopic
phenomenon produced by the interaction between hydrogen pro-
tons immersed in a static magnetic field and a second oscillating
external magnetic field.17 Upon application of a transverse ra-
dio frequency pulse, protons are perturbed and the subsequent
process through which they return to their original initial state is
referred to as relaxation. Two concurrent processes, namely the
longitudinal relaxation (T1-decay) and the transverse relaxation
(T2-decay) are monitored to generate an MR image. In particular,
T1 is the time constant for the physical processes responsible for
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the relaxation of the components of the nuclear spin magnetiza-
tion vector M parallel to the applied external magnetic field B0,
whereas T2 relaxation affects the components of M perpendicu-
lar to B0. The local variation in relaxation, generating the image
contrast, arises from the different local proton densities and from
the chemical and physical nature of the tissues which are object
of the imaging analysis.18

Contrast agents allow to improve the contrast between healthy
and pathological tissues in MRI scans. Complexes based on para-
magnetic materials, such as lanthanide ions or iron oxides, have
the ability to decrease the relaxation times of the nearby pro-
tons via dipolar interactions; thus, they have received remark-
able attention as potential contrast agents.17 In this view, how-
ever, the contrast enhancement in the proximity of the paramag-
netic complexes is strongly influenced by the local dynamics and
diffusion of the water molecules19, which may in turn be sensi-
tive to the effect of nearby hard/soft interfaces. For gadolinium
(Gd3+) paramagnetic metal complexes for example, the Solomon-
Bloembergen-Morgan (SBM) theory would predict a change in
the longitudinal relaxivity r1 of the complex following a variation
in the relative translational diffusion time of the water molecules
surrounding the complex, and in the residence lifetime of the wa-
ter molecules bound to the complex.17 Similarly, for magnetic
nanoparticles such as superparamagnetic iron oxide nanoparticles
(SPIOs), an increase in the diffusion time of the water molecules
(i.e. a decrease in the local water self-diffusion coefficient) would
enhance the r2 transverse relaxivity.20 Therefore, the modula-
tion and precise control of the diffusion properties of the water
molecules in the vicinity of the paramagnetic complex plays an
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important role for fine tuning of the imaging performance.21 An
extensive overview with a recent discussion on the topic can be
found in Reference22.

It has been also demonstrated that the covalent attachment
of the complex through the (3-aminopropyl) triethoxysilane to
the surface of either Silicon Mesoporous Particles (SiMPs) or non-
porous SiO2 Particles (SiP), used for delivery of therapeutic and
imaging agents, have a different effect on increasing the relax-
ivity values of the Gd3+ ions when compared to free Gd(DOTA)
complex in aqueous solution.23 The analyzed SiMPs were char-
acterized by either ≈ 50 nm (HP) or 5–10 nm (SP) nanopore
diameters. The experiments showed that, starting from the r1

value for Gd(DOTA) in bulk conditions (about 4 mM-1s-1), r1 in-
creases to 16.8 ± 1.9 mM-1s-1 for the SiMP-SP particles, to 13.7 ±
0.6 mM-1s-1 for SiMP-HP particles and to 8.09 ± 2.1 mM-1s-1 for
SiP.23 The given increases in r1 values are expected due to the an-
choring of Gd(DOTA) to the slowly tumbling nanoparticles. More-
over, the latter increase is observed to be function of the poros-
ity of the nanoparticles, since the diffusion of water molecules
tends to be different according to the pore size.3 In fact, SiMPs-
SP with the smaller pore size of 5–10 nm result in higher r1 values
when compared to SiMPs-HP with pore size of ≈ 50 nm, and SiO2

leads to the smallest increase due to the nonporous structure of
the nanoparticles. The observed relaxivity enhancements may be
attributed to the concurrent increase of both diffusion (τD) and
tumbling (τR) times of the Gd(DOTA) complex, as a result of the
confined conditions experienced by the water molecules in the
proximity of the SiMP/SiP surfaces.

In this work, we propose an original mechanistic interpreta-
tion of the relaxivity enhancement of Gd(DOTA) bonded to solid
surfaces by studying the peculiar transport properties of nanocon-
fined water. Molecular Dynamics (MD) simulations are analyzed
in the light of the Lipari-Szabo formalism, a previously reported
scaling law for the self-diffusion coefficient of water in confined
conditions,3 and the fractional version of the Stokes-Einstein re-
lation. The resulting bottom-up model of Gd(DOTA) relaxivity is
found to be in good agreement with previously reported experi-
ments.

Methods

Geometry

The performed MD study takes inspiration from the experimental
setup analyzed in Reference23, namely the paramagnetic complex
of the Gd(DOTA) contrast agent (Dotarem©), chemically bonded
to mesoporous (SiMP) or nonporous (SiP) silicon-based particles.

Gd(DOTA) is a paramagnetic complex made of a gadolinium
ion (Gd3+) enclosed in 1,4,7,10-tetraazacyclododecane-1,4,7,10-
tetraacetic acid (DOTA), which serves for stability and biocompat-
ibility purposes. The Gd(DOTA) structure (Figure 1a) has been al-
ready previously studied and fully characterized by experiments
and atomistic simulations.24,25

A silica slab (2.1 x 2.5 x 1.5 nm3, periodic along the x and y
directions) is chosen for mimicking the surface of the SiMP or
SiP nanostructure. The atomic coordinates of the solid wall are
generated starting from a silica (SiO2) crystal26, whereas silanol

groups are added as a surface functionalization. The Gd(DOTA)
complex is then bonded to the silica surface (Figure 1b) by means
of the harmonic potential USi−Gd(DOTA) = k(rOC −b)2, where rOC

is the distance between the surface oxygen of the silica wall in cor-
respondence of its barycenter and a carbon atom of DOTA, k the
harmonic constant (400000 kJ mol−1 nm−2) and b the equilib-
rium length of the bond. Note that k has been chosen to lie in the
range of typical values of harmonic constants for the bonded in-
teractions in organic compounds27, whereas b mimics the length
of a chain chemically bonding the contrast agent to a bigger parti-
cle, as in the case of complexes made out of APTES (aminosilane
chain approximately 1 nm long), Gd(DOTA) (contrast agent) and
SiP/SiMP (micrometer-sized particles), as shown in Figure 1c.23

The Gd(DOTA) and the silica structures are then solvated by
TIP3P water model28, which has been proved to better simulate
tumbling properties of Gd(DOTA) at room temperature.25,29 Af-
ter solvation, the size of the computational box employed to sim-
ulate the free tumbling of Gd(DOTA) in water is 4 x 4 x 4 nm3,
whereas the ones to study the tumbling motion of Gd(DOTA)
bounded to the solid wall are 2.5 x 2.1 x 10.2 nm3. Since the
solid wall is 1.5 nm thick, the latter setup mimics a nanoconfined
water cavity with 8.5 nm thickness that allows to recover bulk
water conditions at the center.3

Different definitions for the Gd(DOTA)-silica relative distances
are adopted (see Figure 1d). In particular, b is the length of the
DOTA-silica covalent bond; dmin is the average minimum distance
between the silica wall and the Gd(DOTA) atoms during the sim-
ulation; rGd(DOTA) is the average radius of the Gd(DOTA) com-
pound (∼= 0.5 nm), and d = dmin+rGd(DOTA) is the normal distance
(i.e. evaluated along z axis) between the silica surface and the
Gd(DOTA) barycenter. A detailed overview of the simulated con-
figurations is available in the ESI†, S1.

Force field

Two types of interactions are considered in the MD simulations:
i) bonded interactions, among the atoms forming the silica wall
and DOTA; ii) nonbonded interactions, among the atoms of the
silica wall, the Gd(DOTA) and water.

In the silica and DOTA structures, the bonded interactions are
modeled by means of two harmonic terms, which reproduce the
stretch and angle oscillations around the equilibrium positions of
the solid structures. Bonded parameters of silica and DOTA are
taken from Reference30 and31, respectively.

Nonbonded interactions among the silica, water and Gd(DOTA)
atoms (consisting in both van der Waals and electrostatic interac-
tions) are also taken into account through: (i) a 12-6 Lennard-
Jones term, with mixed parameters chosen according to Lorentz-
Berthelot combination rules; and (ii) a Coulomb term, which
takes into account the interactions between the partial charges
of the structures and the water dipole. Nonbonded parameters
of silica are reported in Reference32; optimized partial charges
for Gd(DOTA) are available in Reference33, whereas Lennard-
Jones parameters are reported in References25 and31. Introduc-
ing bonds of crystallographic length between the Gd ion and the
coordination sphere avoids undesired behaviors during the sim-
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Fig. 1 Overview of the analyzed Gd(DOTA) con�gurations. (a) Gd(DOTA) geometry used in the molecular dynamics simulations. The purple lines

represent the interactions between a Gd3+ ion and the atoms of the �rst coordination sphere. (b) Gd(DOTA) and the silica wall geometry in the

molecular dynamics simulations. Gd(DOTA) is covalently bonded to a silica surface (e.g. surface of mesoporous silicon nanoconstructs or particles).

(c) Possible chemical bonding between Gd(DOTA) and a solid surface via (3-aminopropyl) triethoxysilane (APTES) groups, as tested in Reference23.

(d) Schematic representation of the Gd(DOTA)/silica wall complex and their reciprocal distances.

ulation (e.g. the departure of the inner-sphere water molecule).
This treatment is justified because the Gd(DOTA) complex can be
considered as stable on the molecular dynamics time scale.29

Simulation protocol

MD simulations are carried out using GROMACS34,35, while ren-
dering pictures are made with UCSF Chimera.36 Lennard-Jones
potentials are treated with a twin-range cut-off modified by a
shift function (1.0 nm cut-off distance), whereas the Particle-
Mesh Ewald (PME) algorithm37 with 1.2 nm real-space cutoff
and 0.12 nm reciprocal space gridding is chosen for electrostatic
interactions. Simulations are carried out with a leap-frog algo-
rithm and time step ∆t = 0.5 fs, while periodic boundary condi-
tions are applied along x, y and z directions. Long range disper-
sion corrections are applied to avoid energy artifacts. After that,
the solvated geometry is energy minimized and a K+ counterion
is added to neutralize the system, the system is initialized by a
Maxwellian distribution of velocities and coupled to a Berendsen
thermostat at 300 K for 10 ns (time constant τ = 0.2 ps)38, un-
til the energies of the system relax to steady state. Afterwards,
simulations are continued up to 10 ns in NPT ensemble, by in-
troducing Nosé-Hoover thermostat (300 K and τ = 0.2 ps)39,40

and Parrinello-Rahman barostat (1 bar and τ = 0.5 ps).41 The
steady state is considered as achieved when the measured quan-
tities (e.g. tumbling times, energies, relative distances) tend to
asymptotic values (see ESI†, S2).

The Lipari-Szabo model-free approach

The complex motion of an atomic bond A-B can be decomposed in
two simpler components: translational and rotational motion.42

The Lipari and Szapo theory focuses on the rotational component
of motion (i.e. tumbling), and it allows to fully represent complex
tumbling (e.g. A-B could rotate around some point in the center
of the bond, or swing around like a clock hand, or wobble at the
ends) by means of a few characteristic time constants.

Let us first consider the atomic bond A-B in a freely tumbling
molecule, that is, which is not restrained in its motion. A generic

autocorrelation function C f (t) for a property f (t) is defined as

C f (t) = ⟨ f (ξ ) f (ξ + t)⟩
ξ
, (1)

where on the right-hand side an average over multiple time ori-
gins ξ is considered via the operator ⟨. . .⟩ξ . In this case, the Rota-

tional Autocorrelation Function - RACF (C(t)) of a vector p =
−→
AB

is the correlation between the orientation of one (or more) bond
vectors of the molecule.

If the A-B bond belongs to a free molecule (e.g. Gd(DOTA) in
water in Figure 1a), the Lipari and Szapo theory states that its
tumbling motion can be characterized by τR, namely the charac-
teristic tumbling (or rotational correlation) time of the system.
This characteristic time can be evaluated from the RACF consid-
ering that

C (t) = exp
(
− t

τR

)
. (2)

However, if the A-B bond belongs to a molecule that is part of a
more complex structure (e.g. Gd(DOTA) bonded to a SiMP/SiP),
its tumbling is originated by two distinct motions: a local (i.e.
A-B tumbling within the molecule) and a global (i.e. tumbling
of the overall structure) motion. Therefore, a second correlation
function – CE(t) or extra correlation function – is introduced, for
taking into account the relative motion between the A-B bond and
the overall structure (e.g. tumbling motion of Gd(DOTA) with
respect to the SiMP/SiP):

CE (t) = S2 +
(

1−S2
)

exp
(
− t

τE

)
, (3)

where τE is the extra correlation time and S2 the order parameter,
which quantifies the coupling between the local and global mo-
tions.42,43 If the coupling between the molecule where A-B bond
is situated and the overall complex is absolutely rigid, then S2 = 1,
namely a 100% chance of finding A-B bond in the same position
at any instant; on the other hand, if the coupling is completely
flexible, then S2 = 0 and the form of Equation 2 is recovered.
Equation 2 can be adopted again to describe the tumbling of the
overall structure (e.g. tumbling motion of SiMP/SiP) in terms of
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Fig. 2 Autocorrelation functions of Gd(DOTA) coordination sphere � as obtained from MD simulations � are depicted and �tted by proper Lipari-Szapo

models. (a) Gd(DOTA) in bulk water (red solid line: MD results; black dashed line: Lipari-Szapo model �ttingC (t)= exp(−t/τR), R2=0.99); Gd(DOTA)

bonded to a silica wall with dmin = 1.29 nm (blue solid line: MD results; black dashed line: Lipari-Szapo model �tting C (t) = S2 +(1−S2)exp(−t/τE ),

R2=0.98). (b) Gd(DOTA) bonded to a silica wall with dmin = 0.23 nm (red solid line), dmin = 0.26 nm (green solid line) and 0.51 nm (blue solid line),

respectively. MD results are �tted by Lipari-Szapo model (black dashed lines) C (t) = S2 +(1−S2)exp(−t/τE ) with R2 values of 0.85, 0.94 and 0.96,

respectively.

a molecular correlation time τM as:

CM (t) = exp
(
− t

τM

)
. (4)

Finally, if the extra and molecular motions are independent
from each other, the A-B tumbling can be fully described as
CE (t)CM (t), which yields:

C (t) = S2 exp
(
− t

τM

)
+
(

1−S2
)

exp
(
− t

τT

)
, (5)

where the characteristic time τT relates molecular and extra cor-
relation times as τ

−1
T = τ

−1
M + τ

−1
E . Clearly, only CE(t) can be

extracted from the MD configuration in Figure 1b, since the
micrometer-sized SiMP/SiP should be mimicked as a steady wall
in the considered nanometer-sized domain.

The Lipari-Szapo formalism has been successfully applied for
analyzing Nuclear Magnetic Resonance relaxation data in terms
of tumbling and rotational motion of proteins44,45, RNA43, sug-
ars or micellized surfactants46, and it is recognized as a simple
but accurate form of the spectral density function describing the
motion of NMR probes.47

Results

Tumbling time

The characteristic tumbling motion of the paramagnetic complex
strongly influences its relaxivity, as it characterizes the interac-
tion speed with the surrounding protons. Therefore, in order to
enhance the relaxivity, a typical strategy relies on the increase of
the rotational correlation time.19

Atomistic simulations have been widely used to estimate the
characteristic rotational correlation time of biomolecules or or-
ganic/inorganic particles.19,25,29,33,44 Indeed, from MD trajec-

tories, it is possible to calculate the RACF of selected vec-
tors (i.e. atomic bonds) in a solvated molecule, which can
be used to estimate τR or τE using the Lipari-Szapo approach.
Here, MD simulations are performed to estimate the tumbling
time of the Gd(DOTA) complex in two different conditions: (i)
Gd(DOTA) complex solvated in bulk water (Figure 1a); (ii) sol-
vated Gd(DOTA) complex bonded to a silica wall (Figure 1b), be-
ing b the imposed equilibrium distance for the silica-DOTA bond
(Figure 1d). Different values of b are analyzed, namely 0.4, 0.5,
0.8, 1.0, 2.0, 3.0 nm (see ESI†, S1 for further details of the tested
configurations), in order to assess the effect of the silica-DOTA
bond length on the Gd(DOTA) tumbling motion.

In order to obtain better statistics, for each of the considered
configurations we: i) perform multiple simulations with random
initial velocities; ii) evaluate multiple RACFs for each repetition;
iii) obtain the final RACF and the averaged values of the charac-
teristic tumbling time per configuration. In general, the RACF can
be evaluated for each trajectory as37

C (t) =
∫

∞

0
P2

(
p(ξ ) · p(ξ+ t)

∥p(ξ )∥∥p(ξ+ t)∥

)
dξ , (6)

with P2 being the second-order Legendre polynomial. In our case,
the RACF for the i-th trajectory is obtained as33

Ci (t) =
1
M

M−1

∑
j=0

[
1
9

9

∑
k=1

(∫ te, j

tb, j
P2

(
pk (ξ ) · pk(ξ+ t)

∥pk (ξ )∥∥pk(ξ+ t)∥

)
dξ

)]
, (7)

with k being the index of the nine inner-sphere coordination vec-
tors of the of Gd atom, and j the index of the discrete time inter-
vals (∆t) for the integration, defined as

tb, j = j
∆t
M

, te, j = tb, j +∆t. (8)
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rGd(DOTA)

Fig. 3 Trend of the ratio between τE (extra correlation time of Gd(DOTA) bonded to a silica wall) and τR,bulk = 75 ps (tumbling time of Gd(DOTA)

complex in bulk water), according to di�erent distances between Gd(DOTA) and silica wall. Trend of S2 (order parameter) is also shown. The de�nition

of d and rGd(DOTA) is depicted in Figure 1d. Error bars refer to ±1 s.d.

Once the autocorrelation function Ci (t) is computed for each tra-
jectory, it is then further averaged among the number of indepen-
dent repetitions per case and the tumbling time finally obtained
from the best fit of the Lipari-Szabo model. The complete details
of the considered configurations, including the number of simu-
lation repetitions per case, and the number of time intervals for
the integration are reported in the ESI†, S1.

In case of Gd(DOTA) immersed in bulk water (Figure 1a), the
obtained C (t) for one run reveals that the molecule experiences a
free tumbling motion (Figure 2a, red line); therefore, Equation 2
can be used to compute the characteristic tumbling time τR with
excellent fitting accuracy (R2=0.99). In the case of Gd(DOTA)
bonded to the silica wall, instead, the tumbling motion is limited
by the presence of the silica slab; therefore, the C (t) for one run is
now fitted by Equation 3 (Figure 2a and 2b), allowing to extract
both the extra correlation time τE and the order parameter S2

with good fitting accuracy (R2>0.85). Note that, the simulation
runs are extended until the simulation time is at least 20 times
larger than the characteristic τR or τE in the considered setup.

The characteristic tumbling time of Gd(DOTA) in water ob-
tained from the current simulations is equal to τR = τR,bulk = 75
ps at 300 K, being well validated against experimental measures
in the literature (77± 4 ps at 298 K48). When the Gd(DOTA) is
bonded to the solid wall, instead, the complex becomes part of
a much larger system. In this case, Gd(DOTA) has a constrained
tumbling motion, and the RACFs eventually decay to some static
value, depending on the tightness of the bonding constraint.49

The tumbling motion is now characterized by both the order pa-
rameter S2 and the extra correlation time τE . Figure 3 presents
the results of the 7 tested configurations. The results show that
the characteristic tumbling motion is strongly dependent on d,
and three different behaviors can be observed over the investi-
gated range of Gd(DOTA)-wall distances. First, the tumbling mo-

tion of the bonded Gd(DOTA) resembles the bulk one for d > 2
nm, i.e. S2 → 0 and τE ∼= τR,bulk, meaning that Gd(DOTA) and
wall motions are completely decoupled and bulk conditions of
water are experienced by the molecule. Second, the tumbling
motion of Gd(DOTA) is slowed down for 0.7 nm < d < 2 nm, and
τE/τR,bulk eventually reaches a maximum at d ∼= 0.8 nm, meaning
that the Gd(DOTA) tumbling is significantly affected by the re-
duced water mobility in the proximity of the silica wall, whereas
the Gd(DOTA) and the wall motions are still decoupled (i.e.
S2 ∼= 0). Third, τE/τR,bulk undergoes a sharp drop for d < 0.7 nm,
while S2 sharply increases. This latter behavior can be interpreted
as a progressive full coupling of the Gd(DOTA) and silica wall mo-
tions: below dmin ∼= 2.5 Å, the Gd(DOTA) is completely adsorbed
and seized by the wall, thus the measured tumbling motion is no
more dictated by the surrounding water mobility but is mainly af-
fected by the fast bond oscillations of the Gd-coordination sphere
vectors.

Effective water self-diffusivity

The self-diffusion coefficient of water progressively reduces while
approaching solid surfaces at the nanoscale.50,51 This local modi-
fication is to be ascribed to the layering and reduced mobility that
water molecules experience in the proximity of solid-liquid inter-
faces with respect to bulk conditions, due to attractive nonbonded
interactions.52,53 In isothermal conditions, the self-diffusion coef-
ficient of water has been numerically and experimentally demon-
strated to scale as3,54,55

D ∼= DB (1−θ) , (9)

where DB is the bulk value and θ is a scaling parameter, defined as
the ratio between the nanoconfined and total water volume in the
considered configuration, which is representative of the confining
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geometry and of the chemistry of the solid surface. The nanocon-
fined water volume, indeed, is defined as the solvent accessible
surface (SAS) times a characteristic distance (δ) below which the
potential well generated by the solid surface significantly reduce
the mobility of the water molecules.3 The previous equation can
be used to estimate the local self-diffusivity as

D(z)∼= DB (1−θ (z)) , (10)

where z is the normal coordinate with respect to the consid-
ered solid surface (Figure 1d). Equation 10 relates the effective
self-diffusivity of the water molecules with the bulk value and
with the distance from the solid surface. If the value of D(d)
in correspondence of the barycenter of the Gd(DOTA) complex
is considered as effective for the whole molecule, then an esti-
mate of the local self-diffusion as a function of the Gd(DOTA)-
wall distance can be straightforwardly obtained. However, when
the Gd(DOTA) approaches subnanometer distances to the silica
surface, D strongly decreases and the latter approximation is no
more accurate enough. Then, the effective self-diffusivity of wa-
ter experienced by the Gd(DOTA) complex in the proximity of the
solid surface can be better estimated as:

Deff =
1

2rGd(DOTA)

∫ dmin+2rGd(DOTA)

dmin

DB

(
1− δ

z

)
dz

= DB

[
1− δ

2rGd(DOTA)
ln
(dmin +2rGd(DOTA)

dmin

) ]
, (11)

which is particularly suitable at sub-nanometer distances from the
wall (see ESI†, S3 and S4).

Therefore, it is now possible to define an effective distance dD

such that Deff = D(dD):

dD =
2rGd(DOTA)

ln
(

dmin+2rGd(DOTA)
dmin

) , (12)

which can be considered as the normal distance between the solid
surface and Gd(DOTA) where the self-diffusivity of water pre-
dicted by Equation 10 represents the average value experienced
overall by Gd(DOTA). Note that the discrepancy between d and
dD, therefore between D(d) and D(dD), is larger at subnanometer
distances from the wall, where water mobility sharply decreases
toward near-zero values.

Discussion

Mechanistic modeling of the tumbling motion

In the Lipari-Szapo formalism, the tumbling motion of Gd(DOTA)
bonded to a solid wall (Equation 3) is described by the extra cor-
relation time τE , which quantifies the actual rotational mobility of
the molecule, and by the order parameter S2. In particular, S2 = 1
if the motion of Gd(DOTA) and of the solid wall are fully coupled
by a rigid bond, whereas S2 = 0 implies that the Gd(DOTA) ro-
tational motion is not affected by the wall. Hence, we propose
to model the resulting rotational motion of Gd(DOTA) bonded to
the wall as a combination of two terms coupled with the order

parameter S2, namely

τE (z) = S2
τR,w +

(
1−S2

)
τR,p (z) , (13)

where τR,w is the tumbling time of Gd(DOTA) seized on the silica
wall, τR,p(z) is the characteristic tumbling time of Gd(DOTA) if a
free motion is considered, and z is the reference coordinate nor-
mal to the solid wall (see Figure 1d). In the considered simulation
domain (see Figure 1b), the silica wall is restrained in the center
of the simulation box. Therefore, when Gd(DOTA) is completely
adsorbed on the wall surface, only fast local bond oscillations of
the Gd-coordination sphere interacting with the steady wall are
allowed, which are in the order of τR,w ∼= 1 ps. On the other
hand, the characteristic tumbling time of Gd(DOTA), τR,p(z), can
be correlated with the mobility of the local surrounding water
as:21

τR,p (z) =
1

6DR,p (z)
, (14)

DR,p (z) =
kB T

8π µ (z) r3
Gd(DOTA)

, (15)

where DR,p is the rotational diffusion coefficient of the spherical
shaped Gd(DOTA) in a surrounding medium with viscosity µ (z),
which is affected in turn by the confinement exerted by silica wall
on the water molecules in the proximity of its surface. Note that,
if bulk conditions of water are recovered, τR,p(z = ∞) = τR,bulk,
S2 → 0 and thus τE(z = ∞) = τR,bulk.

Fig. 4 Extra correlation time τE for Gd(DOTA) bonded to a silica wall

and located at di�erent normal distances d from the wall surface. Results

obtained from MD simulations (dots) and predicted by Equation 13 (solid

line) are compared (R2 = 0.98). Error bars refer to ±1 s.d.

According to the classical Stokes-Einstein relation, the self-
diffusivity and viscosity of water are inversely proportional at a
given temperature; however, it has been demonstrated that su-
percooled water violates such a relation.56–60 In fact, the Stokes-
Einstein relation D ∼ µ−1 should be replaced by a "Fractional
Stokes-Einstein relation" D ∼ µ−k for supercooled water, being
k ≤ 1 a characteristic parameter of the medium.61 Given the
similarities between the transport properties of supercooled and
nanoconfined water discussed in Reference3, the self-diffusivity
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and viscosity of water in the proximity of a solid surface can be
related as

µ (z)
µB

∼
(

D(z)
DB

)−1/k
, (16)

where µB is the dynamic viscosity of bulk water. Recalling Equa-
tion 10, µ (z) could then be expressed in explicit form as

µ (z)∼= µB(1−θ (z))−1/k. (17)

In the case of water molecules confined by a silica wall, Equation
17 becomes

µ (z)∼= µB

(
1− δ

z

)−1/k
, (18)

where δ = 0.33 nm3 is the characteristic length of water nanocon-
finement by a flat surface made of silica with surface silanols. The
quantification of θ (z) for Gd(DOTA) bonded to cylindrical silica
nanopores or particles are also discussed in the ESI†, S5.

Notice that the Fractional Stokes-Einstein relation is not the
only one correlating the molecular diffusion coefficient with the
viscosity of fluids under extreme conditions, but alternative ap-
proaches are also available in the literature. For instance, Saugey
and co-workers62 reported approximate forms for the friction fac-
tor as function of the fluid confinement, slip length and size of the
particles. Such approach is based on the classical hydrodynamic
theory, and the analytical forms – which are derived by imple-
menting the iterative reflection method63 – reproduce quite well
the trends of numerical computations in term of translational dif-
fusion coefficient.62

For a fair comparison with simulations, the average self-
diffusivity acting on the Gd(DOTA) surface has to be considered,
i.e. the reference system for the MD results has to be transformed
as τE (z = dD)→ τE (z = d), which from Equation 12 yields:

d =
2rGd(DOTA)

exp
(

2rGd(DOTA)
dD

)
−1

+ rGd(DOTA). (19)

In the simulated configurations, the Gd(DOTA) complex is sol-
vated using the TIP3P water model, therefore µB ∼= 0.43 Pa s,64

DB ∼= 5.88× 10−9m2s−1, T = 300 K and rGd(DOTA)
∼= 0.50 nm.21

Once k = 0.46 is calibrated by best fitting, the results obtained
from the MD simulations and Equation 13 are compared in Fig-
ure 4, where an excellent agreement (R2 = 0.98) between simu-
lations and modeling predictions for τE is found. Notice that the
optimized k found for this model is not far from previous evidence
in the literature, where values around 0.6 have been reported for
supercooled fluids.61,65–68

Confinement effect on relaxivity

SBM equations – with input parameters also taken from the
MD results and theoretical considerations reported in the previ-
ous Sections – are finally employed to predict the Nuclear Mag-
netic Relaxation Dispersion (NMRD) profiles of the nanoconfined
Gd(DOTA) complexes experimentally tested in Reference.23 In
case of Gd(DOTA) bonded to silicon-based particles, the molec-
ular motion of the complex is described by either SiP or SiMP
motion, whereas the local motion is due to Gd(DOTA) (see ESI†,

Fig. 5 Validation of the current SBM model for free Gd(DOTA) complex

solvated in bulk water, at temperature equal to 310 K. The inner (red)

and outer (black) sphere contributions to the total relaxivity (blue) are

shown. The current SBM model (dashed lines) show good agreement

with previous results (solid lines) reported by Ananta et al.21

S6 and S7 for a detailed description of SBM model).
After validating the current implementation of the SBM model

against previously reported data21 for the case of free Gd(DOTA)
complex solvated in bulk water (see the NMRD profiles in Fig. 5,
and the details of the reference test case reported in ESI†, S8),
the NMRD profiles for Gd(DOTA) bonded to SiP are computed.
The minimum distance between DOTA and SiP surface (dmin) is
varied over the range 0.22–2 nm, and the corresponding family
of NMRD profiles is reported in Figure 6. Considering the clin-
ically relevant frequencies tested in the experiments (60 MHz),
the longitudinal relaxivity value measured by Gizzatov et al.23

for the Gd(DOTA)+SiP complex (r1=8.09 ± 2.1 mM-1s-1) is re-
covered for models with dmin between 0.26 and 0.55 nm. These
values are coherent with the average relative distance between
Gd(DOTA) and the solid wall that should be achieved with the
1-nm long APTES chains adopted in the experiments (dmin ≈ 0.55
nm for b ≈ 1 nm,23 see ESI†, S3). Further comparison between
model and experimental values are reported in the ESI†, S9.
Overall, the model predictions show that the relaxivity is signif-
icantly enhanced when a strong coupling (i.e. S2 → 1) between
the Gd(DOTA) and SiP is achieved; whereas the NMRD profile
of the pure Gd(DOTA) is progressively recovered at larger dis-
tances (i.e. decoupling) between the Gd chelate and the silica
surface. Even though τE of the Gd(DOTA) sharply decreases at
dmin < 0.26 nm (Figure 3), r1 increases anyway, because the in-
crease in both S2 and τD while approaching the SiP surface are
the prevailing effects, which eventually enhance the Gd(DOTA)
relaxivity. Hence, the relaxivity enhancement observed in Ref-
erence23 may be attributed to the synergistic contribution of the
Paramagnetic Relaxation Enhancement – PRE effect17 (due to the
Gd(DOTA) complex adsorption to the pore walls of a microme-
ter particle) and of the increase in the diffusion correlation times
(induced by the reduced mobility of the water molecules in the
proximity of solid surfaces), as the pore sizes decreases. There-
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Fig. 7 Parametric analysis of the r1 relaxivity at 1.41 T for: (a) Gd-based complexes with increasing radius rGd(complex). Values are normalized by

the reference relaxivity of Gd(DOTA) at 1.41 T. (b) Gd(DOTA)-SiP complexes with increasing SiP diameter (ΦSiP): inner sphere (IS, red line), outer

sphere (OS, black line) and total (blue line) relaxivities are shown. Values are normalized by the corresponding relaxivities of Gd(DOTA) immersed in

bulk water. (c) Gd(DOTA)-SiMP complexes with increasing pore diameter (φ) and minimum DOTA-surface distance (dmin). Values are normalized

by the corresponding relaxivity of Gd(DOTA) immersed in bulk water.

fore, the geometrical confinement of Gd(DOTA) both limits its
free tumbling (inner-sphere effect) and the diffusion of the sur-
rounding water molecules (outer-sphere effect), which are then
forced to interact longer with the paramagnetic agent adsorbed
to the inner pore surface.21,69

Finally, we analyze the r1 relaxivity for different characteris-
tics of the paramagnetic complex and of the confining particle.
In particular, we systematically analyze the effect of (i) Gd-based
complex size, (ii) SiP diameter in Gd(DOTA)+SiP complexes and
(iii) SiMP pore diameter in Gd(DOTA)+SiMP complexes. The re-
sults of the parametric analysis are reported in Figure 7. First,
Figure 7(a) shows that an increasing radius of possible Gd-based
complexes alternative to DOTA may have a beneficial effect on
clinically relevant relaxivities, due to increased τR (see ESI†, S10).
However, a plateau is reached for rGd(complex)

∼= 2 nm; thus, fur-
ther increases seem to have no significant effect on r1. Second,

Figure 7(b) shows that the relaxivity of Gd(DOTA)+SiP com-
plexes may be enhanced by larger SiP diameters (or increasing
the coupling between Gd(DOTA) and SiP motion, i.e. S2 → 1, see
ESI†, S10). In this case, the inner sphere contribution plays the
major role on the overall relaxivity enhancement; however, while
the molecular tumbling time of SiP increases with its diameter, a
plateau of 1/T1m (and thus of rIS

1 ) is reached with ΦSiP ∼= 4 nm
(see ESI†, S10). Then, further increase of the diameter beyond
this value seem to have no significant effect on r1. Finally, the
curves in Figure 7(c) demonstrate that sharp relaxivity enhance-
ments for Gd(DOTA)+SiMP complexes may be achieved by either
reducing the nanopore width or by approaching the Gd(DOTA) to
the pore surface.
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Summary and conclusions

We have analyzed the effect of confinement of water molecules on
the behavior of paramagnetic colloidal complexes, which are typ-
ically adopted as contrast agents in magnetic resonance imaging.
Based on atomistic simulations, the tumbling and diffusion times
of the gadolinium-based complex Gd(DOTA) have been examined
in bulk and confined conditions, and a mechanistic model for the
interpretation of the results in the light of the mobility reduction
of water molecules in the proximity of solid surfaces has been pro-
posed. The experimental set-up reported in Reference23 has been
adopted, and the related nanoconstructs have been mimicked by
Gd(DOTA) complex bonded to silica walls. The bulk tumbling
time of the complex has been found to accurately match the ex-
periments. The tumbling time of the confined complex, which
depends on its distance from the wall, has been interpreted in the
light of the Lipari-Szabo formalism (see ESI†, S11 for a discussion
on the applicability of this model-free approach) and of the local
modification of solvent properties, based on the fractional Stokes-
Einstein relation for estimating the local water viscosity. This lat-
ter scaling has been related to the effect of local confinement of
the water molecules using a previously reported expression for
the self-diffusion of water under nanoconfined conditions.3

It has been found that the geometrical confinement of the para-
magnetic complex limits its free tumbling on the inner-sphere,
and the diffusion of the surrounding water molecules on the
outer-sphere. These effects force water molecules to have a
longer interaction (resident time) with the paramagnetic agent
adsorbed to the inner pore surface. Based on the results obtained,
it is suggested that the design of novel nanovectors aiming to en-
hance the relaxation properties of Gd(DOTA) may encompass the
following characteristics (see Figure 7 and ESI†, S10): i) a stiff
(i.e. high S2) and short (i.e. low dmin) bonding chain between the
paramagnetic complex and the surface of the nanovector (ideally,
a single covalent bond between the DOTA and the nanovector
surface may give the largest r1 enhancement); ii) a diameter of
the nanovector smaller than a few tens of nanometers; iii) a mi-
croporous structure, with pore diameters typically smaller than 4
nm. As an example, similar features may be found in nanovectors
made out of zeolite70,71 or polymer bundles.72
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