1,518 research outputs found

    Abundances in galactic H2 regions, 3: G25.4-0.2, G45.5+0.06, M8, S159 and DR22

    Get PDF
    Measurements of the ARII (6.99 microns), ArIII (8.99 microns), NeII (12.81 microns), SIII (18.71 microns), and SIV (10.51 microns) lines are presented for five compact HII regions along with continuum spectroscopy. From these data and radio data, lower limits to the elemental abundances of Ar, S, and Ne were deduced. The complex G25.4-0.2 is only 5.5 kpc from the galactic center, and is considerably overabundant in all these elements. Complex G45.5+0.06 is at seven kpc from the galactic center, and appears to be approximately consistent with solar abundance. The complex S159 in the Perseus Arm, at 12 kpc from the galactic center, has solar abundance, while M8 in the solar neighborhood may be somewhat overabundant in Ar and Ne. Complex DR 22, at 10 kpc from the galactic center in the Cygnus Arm, is overabundant in Ar. A summary of results from a series of papers on abundances is given

    Dust Properties and Star-Formation Rates in Star-Forming Dwarf Galaxies

    Full text link
    We have used the Spitzer Space Telescope to study the dust properties of a sample of star-forming dwarf galaxies. The differences in the mid-infrared spectral energy distributions for these galaxies which, in general, are low metallicity systems, indicate differences in the physical properties, heating, and/or distribution of the dust. Specifically, these galaxies have more hot dust and/or very small grains and less PAH emission than either spiral or higher luminosity starburst galaxies. As has been shown in previous studies, there is a gradual decrease in PAH emission as a function of metallicity. Because much of the energy from star formation in galaxies is re-radiated in the mid-infrared, star-formation rate indicators based on both line and continuum measurements in this wavelength range are coming into more common usage. We show that the variations in the interstellar medium properties of galaxies in our sample, as measured in the mid-infrared, result in over an order of magnitude spread in the computed star-formation rates.Comment: 25 pages, 11 figures, 4 tables, ApJ accepte

    Dynamic Response of Block Copolymer Wormlike Micelles to Shear Flow

    Get PDF
    The linear and non-linear dynamic response to an oscillatory shear flow of giant wormlike micelles consisting of Pb-Peo block copolymers is studied by means of Fourier transform rheology. Experiments are performed in the vicinity of the isotropic-nematic phase transition concentration, where the location of isotropic-nematic phase transition lines is determined independently. Strong shear-thinning behaviour is observed due to critical slowing down of orientational diffusion as a result of the vicinity of the isotropic- nematic spinodal. This severe shear-thinning behaviour is shown to result in gradient shear banding. Time-resolved Small angle neutron scattering experiments are used to obtain insight in the microscopic phenomena that underly the observed rheological response. An equation of motion for the order-parameter tensor and an expression of the stress tensor in terms of the order-parameter tensor are used to interpret the experimental data, both in the linear and non-linear regime. Scaling of the dynamic behaviour of the orientational order parameter and the stress is found when critical slowing down due to the vicinity of the isotropic-nematic spinodal is accounted for.Comment: Accepted by J. Phys.: Condens. Matter, CODEF II Special Issue. 20 pages, 9 figure

    Dynamic Response of Block Copolymer Wormlike Micelles to Shear Flow

    Get PDF
    The linear and non-linear dynamic response to an oscillatory shear flow of giant wormlike micelles consisting of Pb-Peo block copolymers is studied by means of Fourier transform rheology. Experiments are performed in the vicinity of the isotropic-nematic phase transition concentration, where the location of isotropic-nematic phase transition lines is determined independently. Strong shear-thinning behaviour is observed due to critical slowing down of orientational diffusion as a result of the vicinity of the isotropic- nematic spinodal. This severe shear-thinning behaviour is shown to result in gradient shear banding. Time-resolved Small angle neutron scattering experiments are used to obtain insight in the microscopic phenomena that underly the observed rheological response. An equation of motion for the order-parameter tensor and an expression of the stress tensor in terms of the order-parameter tensor are used to interpret the experimental data, both in the linear and non-linear regime. Scaling of the dynamic behaviour of the orientational order parameter and the stress is found when critical slowing down due to the vicinity of the isotropic-nematic spinodal is accounted for.Comment: Accepted by J. Phys.: Condens. Matter, CODEF II Special Issue. 20 pages, 9 figure

    Molecular observation of contour-length fluctuations limiting topological confinement in polymer melts

    Get PDF
    In order to study the mechanisms limiting the topological chain confinement in polymer melts, we have performed neutron-spin-echo investigations of the single-chain dynamic-structure factor from polyethylene melts over a large range of chain lengths. While at high molecular weight the reptation model is corroborated, a systematic loosening of the confinement with decreasing chain length is found. The dynamic-structure factors are quantitatively described by the effect of contour-length fluctuations on the confining tube, establishing this mechanism on a molecular level in space and time

    Spitzer IRS Spectra of Optically Faint Infrared Sources with Weak Spectral Features

    Get PDF
    Spectra have been obtained with the low-resolution modules of the Infrared Spectrograph (IRS) on the Spitzer Space Telescope (Spitzer) for 58 sources having fν_{\nu}(24 micron) > 0.75 mJy. Sources were chosen from a survey of 8.2 deg2^{2} within the NOAO Deep Wide-Field Survey region in Bootes (NDWFS) using the Multiband Imaging Photometer (MIPS) on the Spitzer Space Telescope. Most sources are optically very faint (I > 24mag). Redshifts have previously been determined for 34 sources, based primarily on the presence of a deep 9.7 micron silicate absorption feature, with a median z of 2.2. Spectra are presented for the remaining 24 sources for which we were previously unable to determine a confident redshift because the IRS spectra show no strong features. Optical photometry from the NDWFS and infrared photometry with MIPS and the Infrared Array Camera on the Spitzer Space Telescope (IRAC) are given, with K photometry from the Keck I telescope for some objects. The sources without strong spectral features have overall spectral energy distributions (SEDs) and distributions among optical and infrared fluxes which are similar to those for the sources with strong absorption features. Nine of the 24 sources are found to have feasible redshift determinations based on fits of a weak silicate absorption feature. Results confirm that the "1 mJy" population of 24 micron Spitzer sources which are optically faint is dominated by dusty sources with spectroscopic indicators of an obscured AGN rather than a starburst. There remain 14 of the 58 sources observed in Bootes for which no redshift could be estimated, and 5 of these sources are invisible at all optical wavelengths.Comment: Accepted by Ap

    Star formation in z>1 3CR host galaxies as seen by Herschel

    Get PDF
    We present Herschel (PACS and SPIRE) far-infrared (FIR) photometry of a complete sample of z>1 3CR sources, from the Herschel GT project The Herschel Legacy of distant radio-loud AGN (PI: Barthel). Combining these with existing Spitzer photometric data, we perform an infrared (IR) spectral energy distribution (SED) analysis of these landmark objects in extragalactic research to study the star formation in the hosts of some of the brightest active galactic nuclei (AGN) known at any epoch. Accounting for the contribution from an AGN-powered warm dust component to the IR SED, about 40% of our objects undergo episodes of prodigious, ULIRG-strength star formation, with rates of hundreds of solar masses per year, coeval with the growth of the central supermassive black hole. Median SEDs imply that the quasar and radio galaxy hosts have similar FIR properties, in agreement with the orientation-based unification for radio-loud AGN. The star-forming properties of the AGN hosts are similar to those of the general population of equally massive non-AGN galaxies at comparable redshifts, thus there is no strong evidence of universal quenching of star formation (negative feedback) within this sample. Massive galaxies at high redshift may be forming stars prodigiously, regardless of whether their supermassive black holes are accreting or not.Comment: 30 pages, 13 figures, 4 tables. Accepted for publication in A&

    The Most Luminous z~9-10 Galaxy Candidates yet Found: The Luminosity Function, Cosmic Star-Formation Rate, and the First Mass Density Estimate at 500 Myr

    Full text link
    [abridged] We present the discovery of four surprisingly bright (H_160 ~ 26 - 27 mag AB) galaxy candidates at z~9-10 in the complete HST CANDELS WFC3/IR GOODS-N imaging data, doubling the number of z~10 galaxy candidates that are known, just ~500 Myr after the Big Bang. Two similarly bright sources are also detected in a systematic re-analysis of the GOODS-S data set. Three of the four galaxies in GOODS-N are significantly detected at 4.5-6.2sigma in the very deep Spitzer/IRAC 4.5 micron data, as is one of the GOODS-S candidates. Furthermore, the brightest of our candidates (at z=10.2+-0.4) is robustly detected also at 3.6 micron (6.9sigma), revealing a flat UV spectral energy distribution with a slope beta=-2.0+-0.2, consistent with demonstrated trends with luminosity at high redshift. The abundance of such luminous candidates suggests that the luminosity function evolves more significantly in phi_* than in L_* at z>~8 with a higher number density of bright sources than previously expected. Despite the discovery of these luminous candidates, the cosmic star formation rate density for galaxies with SFR >0.7 M_sun/yr shows an order-of-magnitude increase in only 170 Myr from z ~ 10 to z ~ 8, consistent with previous results. Based on the IRAC detections, we derive galaxy stellar masses at z~10, finding that these luminous objects are typically 10^9 M_sun. The cosmic stellar mass density at z~10 is log10 rho_* = 4.7^+0.5_-0.8 M_sun Mpc^-3 for galaxies brighter than M_UV~-18. The remarkable brightness, and hence luminosity, of these z~9-10 candidates highlights the opportunity for deep spectroscopy to determine their redshift and nature, demonstrates the value of additional search fields covering a wider area to understand star-formation in the very early universe, and highlights the opportunities for JWST to map the buildup of galaxies at redshifts much earlier than z~10.Comment: 20 pages, 12 figures, changed to match resubmitted version to Ap
    • …
    corecore