15,906 research outputs found
Design diversity: an update from research on reliability modelling
Diversity between redundant subsystems is, in various forms, a common design approach for improving system dependability. Its value in the case of software-based systems is still controversial. This paper gives an overview of reliability modelling work we carried out in recent projects on design diversity, presented in the context of previous knowledge and practice. These results provide additional insight for decisions in applying diversity and in assessing diverseredundant systems. A general observation is that, just as diversity is a very general design approach, the models of diversity can help conceptual understanding of a range of different situations. We summarise results in the general modelling of common-mode failure, in inference from observed failure data, and in decision-making for diversity in development.
The Aedes Mosquitoes of the Philippine Islands. 1. Keys to Species. Subgenera Mucidus, Ochlerotatus, and Finlaya (Diptera, Culicidae)
Volume: 5Start Page: 211End Page: 25
Hot entanglement in a simple dynamical model
How mixed can one component of a bi-partite system be initially and still
become entangled through interaction with a thermalized partner? We address
this question here. In particular, we consider the question of how mixed a
two-level system and a field mode may be such that free entanglement arises in
the course of the time evolution according to a Jaynes-Cummings type
interaction. We investigate the situation for which the two-level system is
initially in mixed state taken from a one-parameter set, whereas the field has
been prepared in an arbitrary thermal state. Depending on the particular choice
for the initial state and the initial temperature of the quantised field mode,
three cases can be distinguished: (i) free entanglement will be created
immediately, (ii) free entanglement will be generated, but only at a later time
different from zero, (iii) the partial transpose of the joint state remains
positive at all times. It will be demonstrated that increasing the initial
temperature of the field mode may cause the joint state to become distillable
during the time evolution, in contrast to a non-distillable state at lower
initial temperatures. We further assess the generated entanglement
quantitatively, by evaluating the logarithmic negativity numerically, and by
providing an analytical upper bound.Comment: 5 pages, 2 figures. Contribution to the proceedings of the
'International Conference on Quantum Information', Oviedo, July 13-18, 2002.
Discusses sudden changes of entanglement properties in a dynamical quantum
mode
Studies on mouse Moloney virus induced tumours: I. The detection of p30 as a cytotoxic target on murine Moloney leukaemic spleen cells, and on an in vitro Moloney sarcoma line by antibody mediated cytotoxicity.
Antigenic determinants of p30, the most abundant internal virion protein of C type RNA viruses, were detected on the surface of spleen cells from mice bearing Moloney leukaemia and on an in vitro line of Moloney sarcoma, MSC. On both cell types, these determinants on the p30 molecules served as cytotoxic targets in a xenogenic complement dependent antibody mediated 51Cr release assay. Two antisera were used: a rat anti MLV -M induced lymphoma serum, and an antiserum raised in goats to either disrupted FeLV. The cytotoxic target antigens of these antisera were analysed by inhibition of cytotoxicity with viral and cellular proteins
On the Preparation of Pure States in Resonant Microcavities
We consider the time evolution of the radiation field (R) and a two-level
atom (A) in a resonant microcavity in terms of the Jaynes-Cummings model with
an initial general pure quantum state for the radiation field. It is then
shown, using the Cauchy-Schwarz inequality and also a Poisson resummation
technique, that {\it perfect} coherence of the atom can in general never be
achieved. The atom and the radiation field are, however, to a good
approximation in a pure state in the middle of what
has been traditionally called the ``collapse region'', independent of the
initial state of the atoms, provided that the initial pure state of the
radiation field has a photon number probability distribution which is
sufficiently peaked and phase differences that do not vary significantly around
this peak. An approximative analytic expression for the quantity
\Tr[\rho^2_{A}(t)], where is the reduced density matrix for the
atom, is derived. We also show that under quite general circumstances an
initial entangled pure state will be disentangled to the pure state .Comment: 14 pages and 3 figure
Computational methods for global/local analysis
Computational methods for global/local analysis of structures which include both uncoupled and coupled methods are described. In addition, global/local analysis methodology for automatic refinement of incompatible global and local finite element models is developed. Representative structural analysis problems are presented to demonstrate the global/local analysis methods
Decoherence limits to quantum computation using trapped ions
We investigate the problem of factorization of large numbers on a quantum
computer which we imagine to be realized within a linear ion trap. We derive
upper bounds on the size of the numbers that can be factorized on such a
quantum computer. These upper bounds are independent of the power of the
applied laser. We investigate two possible ways to implement qubits, in
metastable optical transitions and in Zeeman sublevels of a stable ground
state, and show that in both cases the numbers that can be factorized are not
large enough to be of practical interest. We also investigate the effect of
quantum error correction on our estimates and show that in realistic systems
the impact of quantum error correction is much smaller than expected. Again no
number of practical interest can be factorized.Comment: 23 pages + 11 picture
Video data modulation study, volume 1 Final report
Video data modulation technique
- …