12 research outputs found

    Phytoremediation of heavy metal-contaminated sites: Eco-environmental concerns, field studies, sustainability issues and future prospects

    Get PDF
    Environmental contamination due to heavy metals (HMs) is of serious ecotoxicological concern worldwide because of their increasing use at industries. Due to non-biodegradable and persistent nature, HMs cause serious soil/water pollution and severe health hazards in living beings upon exposure. HMs can be genotoxic, carcinogenic, mutagenic, and teratogenic in nature even at low concentration. They may also act as endocrine disruptors and induce developmental as well as neurological disorders and thus, their removal from our natural environment is crucial for the rehabilitation of contaminated sites. To cope with HM pollution, phytoremediation has emerged as a low-cost and eco-sustainable solution to conventional physico-chemical cleanup methods that require high capital investment and labor alter soil properties and disturb soil microflora. Phytoremediation is a green technology wherein plants and associated microbes are used to remediate HM-contaminated sites to safeguard the environment and protect public health. Hence, in view of the above, the present paper aims to examine the feasibility of phytoremediation as a sustainable remediation technology for the management of metals-contaminated sites. Therefore, this paper provides an in-depth review on both the conventional and novel phytoremediation approaches, evaluate their efficacy to remove toxic metals from our natural environment, explore current scientific progresses, field experiences and sustainability issues and revise world over trends in phytoremediation research for its wider recognition and public acceptance as a sustainable remediation technology for the management of contaminated sites in 21st century

    Assessing the effect of copper on growth, copper accumulation and physiological responses of grazing species Atriplex halimus: Ecotoxicological implications

    Get PDF
    Tolerance of plants to elevated concentrations of heavy metals in growth media and in its tissues leads to high degrees of metal bioaccumulation, which may pose a risk for humans and animals alike. Therefore, bio-accumulating plants need thorough evaluation from an environmental health point of view. A glasshouse experiment concerning the xerohalophyte Atriplex halimus was carried out to determine its tolerance and capacity to accumulate copper. We investigated the effect of Cu from 0 to 30mmoll-1 on the growth, photosynthetic apparatus and nutrient uptake of A. halimus by measuring gas exchange, chlorophyll fluorescence and photoinhibition. We also determined total Cu, sodium, potassium, magnesium, phosphorous, and nitrogen content in the plant. Our results indicated that A. halimus presented a high resistance to Cu-induced stress, since the plants were able to survive at concentrations higher than 15mmoll-1 Cu. However, this capacity was not reflected in its ability to accumulate and tolerate greater amounts of Cu in its tissues, since clear phytotoxicity symptoms were detected at tissue concentrations greater than 38mgkg-1 Cu. Thus, Cu increment caused a reduction in A. halimus growth, which was related to a decrease in net photosynthetic rate. This reduction was associated with the adverse effect of Cu on the photochemical apparatus and the reduction in the absorption of essential nutrients. The high resistance of A. halimus was largely related with the capacity of this species to avoid the absorption of great amounts of Cu. For all the above reasons, A. halimus could have the characteristics of a Cu-exclusion plant.Peer Reviewe

    Spartina densiflora demonstrates high tolerance to phenanthrene in soil and reduces it concentration

    No full text
    The present study was conducted to investigate the tolerance of Spartina densiflora to phenanthrene, and to test its ability in phenanthrene dissipation. A glasshouse experiment was designed to investigate the effect of phenanthrene from 0 to 1000mgkg-1 on growth and photosynthetic apparatus of S. densiflora by measuring chlorophyll fluorescence parameters, gas exchange and photosynthetic pigments. We also performed chemical analysis of plant samples, and determined the concentration of phenanthrene remaining in soil. S. densiflora survived to concentrations as high as 1000mgkg-1 phenanthrene in soil; in fact, there was no significant difference in RGR among the treatments after 30days. Otherwise, phenanthrene affected photosynthetic apparatus at 100 and 1000mgkg-1; thus, the lower ΦPSII could be explained by the declined photosynthetic pigment concentrations. Soil extraction indicated a more marked rate of phenanthrene disappearance in the soil in the presence of S. densiflora.Peer Reviewe

    Changes in the sorption-desorption of fungicides over time in an amended sandy clay loam soil under laboratory conditions

    Get PDF
    Purpose: The aim of this work was to study the temporal changes in the sorption-desorption of fungicides in a sandy clay loam soil amended with spent mushroom substrate (SMS) under controlled laboratory conditions and the influence that fungicides properties and soil characteristics have on these processes. Soil amendment with SMS is becoming a widespread management practice since it can effectively solve the problems of uncontrolled SMS accumulation and disposal and improve soil quality. However, when simultaneously applied with pesticides, SMS can significantly modify the environmental behaviour of these compounds. Materials and methods: Sorption-desorption isotherms of metalaxyl, penconazole, pyrimethanil and iprovalicarb for unamended and amended vineyard soils from La Rioja (Spain) were obtained. Composted SMS (C-SMS) and fresh SMS (F-SMS) from cultivation of different mushrooms were used as amendments at 2 % and 10 % rates. Soil parameters (organic carbon (OC), dissolved organic carbon (DOC), humic acid (HA) and fulvic acid (FA)) and sorption (Kf, nf, Kd, Koc) and desorption (Kfd, nfd, H) parameters of fungicides were determined over 0, 6 and 12 months of soil incubation with SMS under controlled conditions. Results and discussion: Addition of amendments to soil increased soil sorption capacity of fungicides. Kd values increased with the hydrophobic character of fungicides (metalaxyl < iprovalicarb < pyrimethanil < penconazole) at both amendment rates. The lower content of DOC and the higher degree of OC humification enhanced sorption of all fungicides by the soil + C-SMS with regard to the soil + F-SMS. In general, sorption of fungicides decreased after 6 and 12 months of soil + SMS incubation, although the humification degree of the remaining OC expressed by HA/FA increased. This might indicate that the OC content was more important for fungicide sorption than the changes in its nature with the incubation time. SMS addition favoured desorption of metalaxyl and iprovalicarb, in general, whereas irreversible sorption of penconazole and pyrimethanil increased. However, the opposite trends were observed when the soil + SMS incubation time increased. Conclusions: The results show an increase in sorption of all fungicides by amending soil with composted or fresh SMS. However, desorption of fungicides increases or decreases depending on the properties of fungicides and soil + SMS. Changes in both processes with the incubation time are more related to the OC content of the amended soil than to the evolution of its nature. These outcomes are of interest for extending SMS application to soil with minimal or no environmental risk when used simultaneously with fungicides. © 2012 Springer-Verlag

    Intra-annual trends of fungicide residues in waters from vineyard areas in La Rioja region of northern Spain

    Get PDF
    The temporal trends of fungicides in surface and ground water in 90 samples, including both surface waters (12) and ground waters (78) from an extensive vineyard area located in La Rioja (Spain), were examined between September 2010 and September 2011. Fungicides are used in increasing amounts on vines in many countries, and they may reach the water resources. However, few data have been published on fungicides in waters, with herbicides being the most frequently monitored compounds. The presence, distribution and year-long evolution of 17 fungicides widely used in the region and a degradation product were evaluated in waters during four sampling campaigns. All the fungicides included in the study were detected at one or more of the points sampled during the four campaigns. Metalaxyl, its metabolite CGA-92370, penconazole and tebuconazole were the fungicides detected in the greatest number of samples, although myclobutanil, CGA-92370 and triadimenol were detected at the highest concentrations. The highest levels of individual fungicides were found in Rioja Alavesa, with concentrations of up to 25.52 g L1, and more than 40 % of the samples recorded a total concentration of &gt;0.5 g L1. More than six fungicides were positively identified in a third of the ground and surface waters in all the sampling campaigns. There were no significant differences between the results obtained in the four sampling campaigns and corroborated a pattern of diffuse contamination from the use of fungicides. The results confirm that natural waters in the study area are extremely vulnerable to contamination by fungicides and highlight the need to implement strategies to prevent and control water contamination by these compounds. © 2016 Springer-Verlag Berlin Heidelber
    corecore