127 research outputs found
Motile aeromonads from farmed and wild freshwater fish in northern Italy: an evaluation of antimicrobial activity and multidrug resistance during 2013 and 2016
Background
Antimicrobial resistant bacteria are emerging biological contaminants of the environment. In aquatic ecosystems, they originate mainly from hospitals, livestock manure and private households sewage water, which could contain antimicrobial agents and resistant microorganisms. Aeromonas spp. occur ubiquitously in aquatic environments and they cause disease in fish. Motile aeromonads are also associated with human gastrointestinal and wound infections and fish can act as a transmission route of antimicrobial resistance (AMR) aeromonads to humans. The environmental ubiquity, the natural susceptibility to antimicrobials and the zoonotic potential of Aeromonas spp. make them optimal candidates for studying the AMR in aquatic ecosystems.
Results
The AMR patterns of 95 motile aeromonads isolated from freshwater fish during 2013 and 2016 were analyzed. All samples from fish came from farms and natural water bodies located in northern Italy, which is an area characterized by high anthropic impact on the environment. The isolates were biochemically identified as Aeromonas hydrophila, Aeromonas sobria or Aeromonas caviae and AMR was determined by the standard disk diffusion method. All isolates were resistant to cloxacillin, spiramycin and tilmicosin. High AMR frequencies (>\u200995%) were detected for tylosin, penicillin and sulfadiazine. AMR to danofloxacin, enrofloxacin, flumequine, ceftiofur, aminosidine, colistin, doxycycline, gentamicin, marbocyl and florfenicol was observed at low levels (<\u200910%). No AMR to cefquinome was found. Logistic regression showed several differences in antimicrobial activity between complexes. According to the source of aeromonads, only few differences in AMR between isolates from farmed and wild fish were observed.
Conclusions
Our data revealed an increasing trend of AMR to neomycin and apramycin among Aeromonas isolates during the study period, while resistance to erythromycin, tetracycline and thiamphenicol decreased. All isolates were multidrug resistance (MDR), but A. caviae showed the highest number of MDR per isolate. In most isolates, various degrees of MDR were detected to macrolides, quinolones, fluoroquinolones, polymyxins and cephalosporins (third and fourth generations), which are listed, by the World Health Organisation, to be among the highest priority and critically important antimicrobials in human medicine. Our findings underlined that freshwater fish can act as potential source of MDR motile aeromonads. Due to their zoonotic potential, this can pose serious threat to human health
Non-assembled orf2 capsid protein of porcine circovirus 2b does not confer protective immunity
Porcine Circovirus 2 (PCV2) vaccines are based on either inactivated whole virion, or recombinant ORF2 capsid protein assembled into Virus-like Particles (VLPs). No data are available about the immunizing properties of free, non-assembled capsid protein. To investigate this issue, ORF2 of a reference PCV2b strain was expressed in a Baculovirus-based expression system without assembly into VLPs. The free purified protein was formulated into an oil vaccine at three distinct Ag payloads: 10.8/3.6/1.2 micrograms/dose. Each dose was injected intramuscularly into five, 37-day old piglets, carefully matched for maternally-derived antibody. Five control piglets were injected with sterile PBS in oil adjuvant. Twenty-eight days later, all the pigs were challenged intranasally with 105.3 TCID50 of PCV2b strain DV6503. After challenge infection, all the pigs remained in good clinical conditions. The recombinant vaccine did not induce significant antibody and PCV2-specific IFN-γ responses. ELISPOT and lymphocyte proliferation data confirmed poor induction of cell-mediated immunity. In terms of PCV2 viremia, there was no significant difference between vaccinated and control animals. The histological data indicated the absence of a detectable viral load and of PCVAD lesions in both vaccinated and control animals, as well as of histiocytes and multi-nucleated giant cells. We conclude that free, non-assembled ORF2 capsid protein does not induce protective immunity
Porcine Lawsonia intracellularis Ileitis in Italy and Its Association with Porcine Circovirus Type 2 (PCV2) Infection
The objective of this study was to employ a diagnostic algorithm, which involves detecting positive farms by stool PCR followed by PCR and histology/immunohistochemistry on ileum samples, for diagnosing Lawsonia intracellularis proliferative enteritis in Northern Italy. The primary aim was to examine the relationship between the gold standard of L. intracellularis diagnostics, namely histology and immunohistochemistry, and PCR in acute and chronic cases of L. intracellularis enteritides. An additional goal was to investigate the coinfection of L. intracellularis with porcine circovirus type 2 (PCV2). Twenty-eight ileum samples, including four from acute cases and 24 from chronic cases, were collected. PCR yielded positive results in 19 cases (four acute and 15 chronic cases). In comparison, immunohistochemistry was positive in 16 cases (four acute and 12 chronic cases), with an observed agreement of 89%. The findings suggest that performing the two tests in series can increase the specificity of the causal diagnosis. PCR may be used as a screening tool to identify the presence of the microorganism, and only positive cases will be examined by histology and immunohistochemistry to confirm the causative role of L. intracellularis. Co-infection with PCV2 was demonstrate in two out of four acute cases and in two out of 24 chronic cases, providing further evidence to support the hypothesis that when the infection starts with ubiquitous pathogens such as L. intracellularis, it may boost the possibility of PCV2 replication, especially in acute cases. As a result, this may trigger a transition from subclinical to clinical forms of PCV2 disease
Spatial Transmission of Swine Vesicular Disease Virus in the 2006-2007 Epidemic in Lombardy
In 2006 and 2007 pig farming in the region of Lombardy, in the north of Italy, was struck by an epidemic of Swine Vesicular Disease virus (SVDV). In fact this epidemic could be viewed as consisting of two sub-epidemics, as the reported outbreaks occurred in two separate time periods. These periods differed in terms of the provinces or municipalities that were affected and also in terms of the timing of implementation of movement restrictions. Here we use a simple mathematical model to analyse the epidemic data, quantifying between-farm transmission probability as a function of between-farm distance. The results show that the distance dependence of between-farm transmission differs between the two periods. In the first period transmission over relatively long distances occurred with higher probability than in the second period, reflecting the effect of movement restrictions in the second period. In the second period however, more intensive transmission occurred over relatively short distances. Our model analysis explains this in terms of the relatively high density of pig farms in the area most affected in this period, which exceeds a critical farm density for between-farm transmission. This latter result supports the rationale for the additional control measure taken in 2007 of pre-emptively culling farms in that area
Esbl/ampc-producing escherichia coli in wild boar: Epidemiology and risk factors
The complex health problem of antimicrobial resistance (AMR) involves many host species, numerous bacteria and several routes of transmission. Extended-spectrum β-lactamase and AmpC (ESBL/AmpC)-producing Escherichia coli are among the most important strains. Moreover, wildlife hosts are of interest as they are likely antibiotics free and are assumed as environmental indicators of AMR contamination. Particularly, wild boar (Sus scrofa) deserves attention because of its increased population densities, with consequent health risks at the wildlife–domestic–human interface, and the limited data available on AMR. Here, 1504 wild boar fecal samples were microbiologically and molecularly analyzed to investigate ESBL/AmpC-producing E. coli and, through generalized linear models, the effects of host-related factors and of human population density on their spread. A prevalence of 15.96% of ESBL/AmpC-producing E. coli, supported by blaCTX-M (12.3%), blaTEM (6.98%), blaCMY (0.86%) and blaSHV (0.47%) gene detection, emerged. Young animals were more colonized by ESBL/AmpC strains than older subjects, as observed in domestic animals. Increased human population density leads to increased blaTEM prevalence in wild boar, suggesting that spatial overlap may favor this transmission. Our results show a high level of AMR contamination in the study area that should be further investigated. However, a role of wild boar as a maintenance host of AMR strains emerged
Assessment of the antibiotic resistance profile, genetic heterogeneity and biofilm production of methicillin-resistant staphylococcus aureus (MRSA) isolated from the italian swine production chain
The main aim of the present study was to evaluate the level of antibiotic resistance, prevalence and virulence features of methicillin-resistant Staphylococcus aureus (MRSA) isolated from heavy swine at abattoir level and farming environments in Lombardy (Northern Italy). With this scope, 88 different heavy swine farms were surveyed, obtaining a total of n = 440 animal swabs and n = 150 environmental swabs. A total of n = 87 MRSA isolates were obtained, with an overall MRSA incidence of 17.50% (n = 77) among animal samples and a 6.67% (n = 10) among environmental. Molecular characterisation using multilocus sequence typing (MLST) plus spa-typing showed that sequence type ST398/t899 and ST398/t011 were the most commonly isolated genotypes, although other relevant sequence types such as ST1 or ST97 were also found. A lack of susceptibility to penicillins, tetracycline and ceftiofur was detected in >91.95, 85.05 and 48.28% of the isolates, respectively. Resistance to doxycycline (32.18%), enrofloxacin (27.59%) and gentamicin (25.29%) was also observed. Additionally, a remarkable level of antibiotic multiresistance (AMR) was observed representing a 77.01% (n = 67) of the obtained isolates. Genetic analysis revealed that 97.70% and 77.01% of the isolates harboured at least one antibiotic resistance or enterotoxin gene, respectively, pointing out a high isolate virulence potential. Lastly, 55.17% (n = 48) were able to produce measurable amounts of biofilm after 24 h. In spite of the current programmes for antibiotic reduction in intensively farming, a still on-going high level of AMR and virulence potential in MRSA was demonstrated, making this pathogen a serious risk in swine production chain, highlighting once more the need to develop efficient, pathogen-specific control strategies
- …