1,058 research outputs found

    Physics Reach of High-Energy and High-Statistics IceCube Atmospheric Neutrino Data

    Get PDF
    This paper investigates the physics reach of the IceCube neutrino detector when it will have collected a data set of order one million atmospheric neutrinos with energies in the 0.1 \sim 10^4 TeV range. The paper consists of three parts. We first demonstrate how to simulate the detector performance using relatively simple analytic methods. Because of the high energies of the neutrinos, their oscillations, propagation in the Earth and regeneration due to \tau decay must be treated in a coherent way. We set up the formalism to do this and discuss the implications. In a final section we apply the methods developed to evaluate the potential of IceCube to study new physics beyond neutrino oscillations. Not surprisingly, because of the increased energy and statistics over present experiments, existing bounds on violations of the equivalence principle and of Lorentz invariance can be improved by over two orders of magnitude. The methods developed can be readily applied to other non-conventional physics associated with neutrinos.Comment: 21 pages, 7 figures, Revtex

    Phase equilibria and thermodynamic properties of oxide systems on the basis of rare earth, alkaline earth and 3d-transition (Mn, Fe, Co) metals. A short overview of

    Full text link
    Review is dedicated studies of phase equilibria in the systems based on rare earth elements and 3d transition metals. It’s highlighted several structural families of these compounds and is shown that many were found interesting properties for practical application, such as high conductivity up to the superconducting state, magnetic properties, catalytic activity of the processes of afterburning of exhaust gases, the high mobility in the oxygen sublattice and more

    Prospects for identifying the sources of the Galactic cosmic rays with IceCube

    Full text link
    We quantitatively address whether IceCube, a kilometer-scale neutrino detector under construction at the South Pole, can observe neutrinos pointing back at the accelerators of the Galactic cosmic rays. The photon flux from candidate sources identified by the Milagro detector in a survey of the TeV sky is consistent with the flux expected from a typical cosmic-ray generating supernova remnant interacting with the interstellar medium. We show here that IceCube can provide incontrovertible evidence of cosmic-ray acceleration in these sources by detecting neutrinos. We find that the signal is optimally identified by specializing to events with energies above 30 TeV where the atmospheric neutrino background is low. We conclude that evidence for a correlation between the Milagro and IceCube sky maps should be conclusive after several years.Comment: 5 pages, 5 figures; part of the text and some figures have changed, conclusions remain the same; equals journal versio

    Potential Neutrino Signals from Galactic Gamma-Ray Sources

    Full text link
    The recent progress made in Galactic gamma-ray astronomy using the High Energy Stereoskopic System (H.E.S.S.) instrument provides for the first time a population of Galactic TeV gamma-rays, and hence potential neutrino sources, for which the neutrino flux can be estimated. Using the energy spectra and source morphologies measured by H.E.S.S., together with new parameterisations of pion production and decay in hadronic interactions, we estimate the signal and background rates expected for these sources in a first-generation water Cherenkov detector (ANTARES) and a next-generation neutrino telescope in the Mediterranean Sea, KM3NeT, with an instrumented volume of 1 km^3. We find that the brightest gamma-ray sources produce neutrino rates above 1 TeV, comparable to the background from atmospheric neutrinos. The expected event rates of the brightest sources in the ANTARES detector make a detection unlikely. However, for a 1 km^3 KM3NeT detector, event rates of a few neutrinos per year from these sources are expected, and the detection of individual sources seems possible. Although generally these estimates should be taken as flux upper limits, we discuss the conditions and type of gamma-ray sources for which the neutrino flux predictions can be considered robust.Comment: 20 pages, 4 figures; v2: ERROR in energy scale of KM3NeT effective neutrino area corrected which resulted in event rates being about a factor 3 too low; v3: grammatical changes and update of references after receiving proof

    Matrix metalloproteinases as target genes for gene regulatory networks driving molecular and cellular pathways related to a multistep pathogenesis of cerebrovascular disease

    Get PDF
    The present study investigated a joint contribution of matrix metalloproteinases (MMPs) genes to ischemic stroke (IS) development and analyzed interactions between MMP genes and genome‐wide associated loci for IS. A total of 1288 unrelated Russians (600 IS patients and 688 healthy individuals) from Central Russia were recruited for the stud
    corecore