21,766 research outputs found

    A pQCD-based description of heavy and light flavor jet quenching

    Get PDF
    We present a successful description of the medium modification of light and heavy flavor jets within a perturbative QCD (pQCD) based approach. Only the couplings involving hard partons are assumed to be weak. The effect of the medium on a hard parton, per unit time, is encoded in terms of three non-perturbative, related transport coefficients which describe the transverse momentum squared gained, the elastic energy loss and diffusion in elastic energy transfer. A fit of the centrality dependence of the suppression and the azimuthal anisotropy of leading hadrons tends to favor somewhat larger transport coefficients for heavy quarks. Imposing additional constraints based on leading order (LO) Hard Thermal Loop (HTL) effective theory, leads to a worsening of the fit.Comment: v2, 4 pages, 3 figure

    Energy and momentum deposited into a QCD medium by a jet shower

    Get PDF
    Hard partons moving through a dense QCD medium lose energy by radiative emissions and elastic scatterings. Deposition of the radiative contribution into the medium requires rescattering of the radiated gluons. We compute the total energy loss and its deposition into the medium self-consistently within the same formalism, assuming perturbative interaction between probe and medium. The same transport coefficients that control energy loss of the hard parton determine how the energy is deposited into the medium; this allows a parameter free calculation of the latter once the former have been computed or extracted from experimental energy loss data. We compute them for a perturbative medium in hard thermal loop (HTL) approximation. Assuming that the deposited energy-momentum is equilibrated after a short relaxation time, we compute the medium's hydrodynamical response and obtain a conical pattern that is strongly enhanced by showering.Comment: 4 pages, 3 figures, revtex4, intro modified, typos correcte

    Process and machine system development for the forming of miniature/micro sheet metal products

    Get PDF
    This paper reports on the current development of the process for the forming of thin sheet-metal micro-parts (t < 50µm) and the corresponding machine system which is part of the research and technological development of an EU funded integrated project - MASMICRO ("Integration of Manufacturing Systems for the Mass-Manufacture of Miniature/Micro-Products" (/www.masmicro.net/). The process development started with qualification of the fundamentals related to the forming of thin sheet-metals in industrial environment, for which a testing machine and several sets of the testing tools were developed. The process was further optimised, followed by new tool designs. Based on the experience gained during the process development, a new forming press which is suitable for industrial, mass-customised production, has been designed

    Group properties and invariant solutions of a sixth-order thin film equation in viscous fluid

    Full text link
    Using group theoretical methods, we analyze the generalization of a one-dimensional sixth-order thin film equation which arises in considering the motion of a thin film of viscous fluid driven by an overlying elastic plate. The most general Lie group classification of point symmetries, its Lie algebra, and the equivalence group are obtained. Similar reductions are performed and invariant solutions are constructed. It is found that some similarity solutions are of great physical interest such as sink and source solutions, travelling-wave solutions, waiting-time solutions, and blow-up solutions.Comment: 8 page

    Hamiltonian equation of motion and depinning phase transition in two-dimensional magnets

    Full text link
    Based on the Hamiltonian equation of motion of the ϕ4\phi^4 theory with quenched disorder, we investigate the depinning phase transition of the domain-wall motion in two-dimensional magnets. With the short-time dynamic approach, we numerically determine the transition field, and the static and dynamic critical exponents. The results show that the fundamental Hamiltonian equation of motion belongs to a universality class very different from those effective equations of motion.Comment: 6 pages, 7 figures, have been accept by EP

    Monolithic millimeter-wave diode grid frequency multiplier arrays

    Get PDF
    Monolithic diode frequency multiplier arrays, including barrier-N-N(+) (BNN) doubler, multi-quantum-barrier-varactor (MQBV) tripler, Schottky-quantum-barrier-varactor (SQBV) tripler, and resonant-tunneling-diode (RTD) tripler arrays, have been successfully fabricated with yields between 85 and 99 percent. Frequency doubling and/or tripling have been observed for all the arrays. Output powers of 2.4-2.6 W (eta = 10-18 percent) at 66 GHz with the BNN doubler and 3.8-10 W (eta = 1.7-4 percent) at 99 GHz with the SQBV tripler have been achieved

    Dependence of the flux creep activation energy on current density and magnetic field for MgB2 superconductor

    Get PDF
    Systematic ac susceptibility measurements have been performed on a MgB2_2 bulk sample. We demonstrate that the flux creep activation energy is a nonlinear function of the current density U(j)j0.2U(j)\propto j^{-0.2}, indicating a nonlogarithmic relaxation of the current density in this material. The dependence of the activation energy on the magnetic field is determined to be a power law U(B)B1.33U(B)\propto B^{-1.33}, showing a steep decline in the activation energy with the magnetic field, which accounts for the steep drop in the critical current density with magnetic field that is observed in MgB2_2. The irreversibility field is also found to be rather low, therefore, the pinning properties of this new material will need to be enhanced for practical applications.Comment: 11 pages, 6 figures, Revtex forma

    Undetermined states: how to find them and their applications

    Full text link
    We investigate the undetermined sets consisting of two-level, multi-partite pure quantum states, whose reduced density matrices give absolutely no information of their original states. Two approached of finding these quantum states are proposed. One is to establish the relation between codewords of the stabilizer quantum error correction codes (SQECCs) and the undetermined states. The other is to study the local complementation rules of the graph states. As an application, the undetermined states can be exploited in the quantum secret sharing scheme. The security is guaranteed by their undetermineness.Comment: 6 pages, no figur

    Computation over MAC : achievable function rate maximization in wireless networks

    Get PDF
    The next generation wireless network is expected to connect billions of nodes, which brings up the bottleneck on the communication speed for distributed data fusion. To overcome this challenge, computation over multiple access channel (CoMAC) was recently developed to compute the desired functions with a summation structure (e.g., mean, norm, etc.) by using the superposition property of wireless channels. This work aims to maximize the achievable function rate of reliable CoMAC in wireless networks. More specifically, considering channel fading and transceiver design, we derive the achievable function rate adopting the quantization and the nested lattice coding, which is determined by the number of nodes, the maximum value of messages and the quantization error threshold. Based on the derived result, the transceiver design is optimized to maximize the achievable function rate of the network. We first study a single cluster network without inter-cluster interference (ICI). Then, a multi-cluster network is further analyzed in which the clusters work in the same channel with ICI. In order to avoid the global channel state information (CSI) aggregation during the optimization, a low-complexity signaling procedure irrelevant with the number of nodes is proposed utilizing the channel reciprocity and the defined effective CSI

    Monolithic millimeter-wave diode array beam controllers: Theory and experiment

    Get PDF
    In the current work, multi-function beam control arrays have been fabricated and have successfully demonstrated amplitude control of transmitted beams in the W and D bands (75-170 GHz). While these arrays are designed to provide beam control under DC bias operation, new designs for high-speed electronic and optical control are under development. These arrays will fill a need for high-speed watt-level beam switches in pulsed reflectometer systems under development for magnetic fusion plasma diagnostics. A second experimental accomplishment of the current work is the demonstration in the 100-170 GHz (D band) frequency range of a new technique for the measurement of the transmission phase as well as amplitude. Transmission data can serve as a means to extract ('de-embed') the grid parameters; phase information provides more complete data to assist in this process. Additional functions of the array beam controller yet to be tested include electronically controlled steering and focusing of a reflected beam. These have application in the areas of millimeter-wave electronic scanning radar and reflectometry, respectively
    corecore