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For a hard parton moving through a dense QCD medium, we compute self-consistently the energy loss

and the fraction deposited into the medium due to showering and rescattering of the shower, assuming

weak coupling between probe and medium. The same transport coefficients thus determine both the

energy loss and its deposition into the medium. This allows a parameter free calculation of the latter once

the former are computed or measured. We compute them for a weakly interacting medium. Assuming a

short thermalization time for the deposited energy, we determine the medium’s hydrodynamical response

and obtain a conical pattern that is strongly enhanced by showering.
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Jet quenching (the modification of hard jets in dense
media) is one of the most studied discoveries at the
Relativistic Heavy-Ion Collider (RHIC) [1]. It is expected
to play a key role in the study of the quark-gluon plasma
(QGP) produced in heavy-ion collisions at the Large
Hadron Collider (LHC). Numerous experiments [2] have
established the suppression of hadrons with high transverse
momenta; others indicate that the lost energy manifests
itself as conical flow in the soft sector [3].

Calculations of jet modification tend to focus on one of
two separate questions: the modification of the final hadron
distribution from the hard parton due to its energy loss, or
the response of the medium to the energy deposited.
Numerous studies of the former, based on perturbative
QCD (pQCD), have yielded near-rigorous measures of

the two nonperturbative transport coefficients q̂ ¼ dp2
?

dL

and ê ¼ dE
dL which codify the transverse (to the jet axis)

momentum diffusion and longitudinal drag experienced by
a fast parton [4]. Computations of the medium response
consist of two parts: an ansatz for the space-time profile of
the energy-momentum deposition, and a calculation of the
dynamical response to this ‘‘source’’ of excess energy and
momentum. Based on its success at RHIC, ideal fluid
dynamics has been used to compute this medium response
[5], assuming that the energy lost by the jet is entirely
deposited into the medium at a constant rate and thermal-
izes instantaneously.

So far there exists no first principles calculation of the
magnitude and space-time profile of the energy-
momentum deposited in a medium by a hard parton that
can be considered on par with the pQCD energy loss
calculations [6]. A noteworthy attempt to calculate the
deposition profile in pQCD is the semiphenomenological
approach of Neufeld and Müller [7] who use the differen-
tial single gluon emission spectrum of Ref. [8] and inter-
pret this as the rate of gluon emission in the medium. A
nondiffusive Fokker-Planck equation is then motivated to
compute how this distribution changes due to elastic en-
ergy loss of the emitted gluons. As anticipated in [9], they

find that not all of the energy lost to gluon radiation is
deposited in the medium. However, since the underlying
formalism [8] lacks information about virtuality evolution,
this calculation does not include gluon multiplication by
showering, i.e., the splitting of a radiated gluon into two
lower virtuality gluons. The transverse momentum depo-
sition thus cannot be computed and, due to the strict
eikonal limit used in [8], the parent parton does not lose
energy after radiation. We present a new formalism in
which the radiative and elastic energy loss of the fast
parton, its virtuality evolution by radiation, the showering
and multiplication of the radiated gluons, and the energy
deposited by them in the medium are all calculated con-
sistently in the same approach.
Hard jets in vacuum or in heavy-ion collisions are pro-

duced with considerable virtuality. As the jets proceed
through vacuum or medium, this virtuality is lost by se-
quential radiative emissions. The effect of this perturbative
shower on the nonperturbative hadronization process is
computed using Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi evolution equations [10] for the fragmentation func-
tion. These equations express the radiation of multiple
partons, which hadronize independently, via an evolution
in virtuality of the parent parton. In a medium, one can
derive analogous equations where the gluon radiation
probability is modified by the scattering of hard parton
and emitted gluons off medium constituents. These are
referred to as ‘‘medium modified evolution equations.’’
In addition to stimulating gluon emission, the scattering
of the hard parton causes it to lose forward light-cone
momentum by elastic exchanges with the medium
[11,12]. At the same time the parton gains transverse
momentum from the medium [13] and imparts to it an
equal amount in return. In an arbitrary medium these
effects are encoded in two nonperturbative transport coef-
ficients, q̂ and ê, defined in terms of in-medium gluon field
correlation functions [12,13]. The medium modification of
the standard vacuum evolution depends on these transport
coefficients.
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In-medium evolution equations where the medium
modified fragmentation function (MMFF) is affected
only by q̂ were derived in [14]. We point out that the
same processes can be used to compute the amplification
of the energy deposited through multiple radiations stimu-
lated by transverse broadening. Formally, this can be com-
puted by replacing the operator expression for the
fragmentation function with that for the energy deposited;
this is identical to ê. Using this calculation of the modified
ê as the energy deposited through all elastic scatterings of
the shower places it on the same footing as energy loss. The
diagrams involved and the resulting expressions for the in-
medium splitting functions (IMSF) are identical. The so-
lution of the in-medium evolution equation for ê no longer
represents the elastic energy loss by one parton, but rather
the energy deposited by the jet shower.

Imagine a hard quark or gluon with large light-cone

momentum q� (and thus energy E ¼ q�=
ffiffiffi

2
p

) and virtual-
ity �� entering a medium of fixed length L held at a
constant temperature T. Let us assume that the rate of
energy deposition by this jet in the medium as a function

of length � , denoted as d�E
d� ðE; �;�2Þ, is known (i.e., can be

calculated or measured). Note that both the deposited
energy �E and � are actually the light-cone quantities
�q� and ��. For brevity we refer to these simply as
deposited energy and distance traveled. Given the above
function, the total energy deposited by a jet originating at
location �i and propagating to �f is given as

�EðE;�2Þ�f�i ¼
Z �f

�i

d�
d�E

d�
ðE; �;�2Þ ’1 partonð�f � �iÞê;

(1)

where the last approximate equality is solely for the case of
a single parton propagating without radiation.

If the scale� is much larger than�QCD, the change with

virtuality in the partonic shower pattern may be calculated
perturbatively: a leading quark at the higher virtuality may
split into a quark and a gluon with lower virtuality, and
similarly for a gluon. As a result, there is change in the
energy deposited in the medium due to the increase of the
number of partons depositing energy. Using the IMSF from
[14], the change in the energy deposition by a quark with
energy E from �i to �f due to the increase in virtuality �

can be expressed as [15]

d�EqðE;�2Þ�f�i
d lnð�2Þ ¼ �sð�2Þ

2�

Z 1

0
dy

Z �f

�i

d�Pq!qgðy; �;�2; EÞ

� f�EqðE;�2Þ��i þ�EqðyE;�2Þ�f�
þ�Eg½ð1� yÞE;�2��f� g: (2)

Here the first term in square brackets represents the energy
deposited by a quark with energy E and virtuality�2, from
the initial location �i to the intermediate location �; the
second and third terms represent the energy deposited by
the quark and the emitted gluon with reduced energies yE

and ð1� yÞE, respectively, from the intermediate location
� to the final location �f. In Eq. (2) the quark IMSF Pq!qg

is given as [14,16]

Pq!qg ¼ q̂CF

2��2

1þ y2

1� y

�

2� 2 cos

�

�2�

2Eyð1� yÞ
��

: (3)

The increase in the energy deposited due to the splitting of
the parton is reduced by the virtual correction which re-
stores unitarity to the evolution equations. The effect of
such corrections on Eq. (2) is incorporated by subtracting
from it the virtual term

V ¼ �sð�2Þ
2�

�EqðE;�2Þ�f�i
�

Z 1

0
dy

Z �f

�i

d�Pq!qgðy; �; �2; EÞ: (4)

Along with the energy deposition from a quark jet one has
to evolve the one from a gluon jet of virtuality��, using a
similar evolution equation that includes the splitting of a
gluon into two gluons or a q �q pair. Similar to the MMFFs,
one solves a coupled set of evolution equations for

�EqðE;�2Þ�f�i and �EgðE;�2Þ�f�i both of which are func-

tions of three variables E, �i, �f at the scale �2.

The evolution Eqs. (2)–(4) for a quark jet and the
coupled equations for gluon jets are motivated by existing
rigorous derivations of the medium modification of the
fragmentation functions due to gluon emission [16], the
accumulation of transverse momentum [13] and longitudi-
nal drag [12] by propagating hard partons in a QCD
medium, and the effect of such accumulated momentum
on radiative processes [17]. The IMSF (3) accounts for
interference between diagrams where the gluon is emitted
at the origin or at the location � . In propagating up to � the
quark loses a fraction of its energy; while this is included in
the total energy deposited, its effect on the interference
pattern in Eq. (3) is ignored; this is justified in the eikonal
limit for the propagating parton. Yet another approxima-
tion is the neglect of the energy lost by the radiated (re-
absorbed) gluon in the virtual correction. Since the radiated
gluon in the virtual correction exists in only one amplitude,
with a single parton in the complex conjugate, its energy
loss is balanced by the quark propagating in the loop.
In the eikonal approximation, the hard jet loses light-

cone momentum and remains close to on shell; thus, the
z component of the deposited light-cone momentum is
approximately equal to the energy deposited (�pz ’
�E). Note that the negative light-cone momentum (�q�)
is not conjugate to �� and thus it is not inconsistent to
compute the �� dependence of the �q� deposited. The
remaining two components that may be computed are the
transverse momentum deposited by the jet as a function of
��. This can again be directly estimated from a pQCD
calculation: A parton traversing a medium gains transverse
momentum squared with length as
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hp2
?iðE;�2Þ�f�i ¼

Z �f

�i

d�
dhp2

?iðE;�2Þ
d�

’1 partonð�f � �iÞq̂:
(5)

By momentum conservation this equals the p2
? deposited

in the medium by the same parton.
For a hard virtual quark the total transverse momentum

deposited increases due to parton splitting. This can be
calculated using an equation similar to that for light-cone
momentum deposition. For a quark with energy E and
virtuality �2, traversing a medium from �i to �f, the

change of the transverse momentum deposited with vir-
tuality is obtained as

dhp2
?iqðE;�2Þ�f�i
dlnð�2Þ ¼�sð�2Þ

2�

Z 1

0
dy

Z �f

�i

d�Pq!qgðy;�;�2;EÞ

�fhp2
?iqðE;�2Þ��i þhp2

?iqðyE;�2Þ�f�
þhp2

?ig½ð1�yÞE;�2��f� g: (6)

The splitting function here is identical to that in Eq. (3),
and the meaning of the three terms in the bracket is
analogous to Eq. (2). Further, one must include a virtual
correction and couple Eq. (6) to a similar equation for the
p2
? deposited by a virtual gluon.

Using Eqs. (2) and (6) (along with the coupled ones for
gluon jets), we can compute the 3-momentum �q�, ~pT

deposited by a hard virtual parton, disintegrating into a
shower of partons, in a dense medium as a function of the
length �� traversed. Similar to the case of in-medium
evolution equations for the MMFF [14], these equations
require an initial condition. For the case of the MMFF, the
only possible choice was to insist that the part of the jet
with virtuality below a minimum �2

0 exited the medium

and use the known vacuum FF at that scale as an input. For
the deposited part of the energy-momentum we here as-
sume that the medium is weakly coupled; thus, when the
virtuality of the parton is �0 ’ 4T the deposited energy
and p2

? can be obtained from the expressions for ê and q̂ in

an HTL plasma [11]:

d�Eð�0; EÞ=d� ¼ CR�sð�2
0Þm2

D log½ð4ET=m2
DÞ1=4�;

dhp2
?ið�0; EÞ=d� ¼ CR�sð�2

0ÞTm2
D log½4ET=m2

D�:
(7)

Here mD is the Debye screening length and CR is the
representation-specific Casimir factor. The integrated en-
ergy and p2

? deposited from Eq. (7), as a function of the

length traveled, is plotted for gluons (circled) and quarks as
solid lines in Figs. 1 and 2. For a consistent description, we
impose that partons with an energy E< 4T become part of
the thermal medium. This condition is maintained through
the evolution equations.

Using Eq. (7) as input, we may calculate the increase in
the energy and p2

? deposition in the medium as a function

of � for initially highly virtual hard partons that evolve into
a radiative shower. Starting from the scale of �0 ¼ 4T (in

all calculations we pick T ¼ 300 MeV and a partonic
plasma with 3 quark flavors) we evolve up to an initial
scale� ¼ E=2. These are plotted as dashed lines in Figs. 1
and 2. One notes immediately that both quantities increase
as we evolve up in virtuality. For comparison, we also
estimate the total energy lost by the hard parton due to
elastic, radiative inelastic and flavor changing interactions
(dash-dotted lines in Fig. 1). The last type of energy loss
refers to the case where a quark splits with the gluon
carrying a larger fraction of the momentum, or a gluon
splits into a quark-antiquark; in this case we assume that
the entire energy of that parent parton has been lost. This
leads to a somewhat artificial enhancement of the total
energy loss.
As an illustration of the effect of this energy-momentum

deposition in the medium, we compute its hydrodynamic
response to the following source term:

J� �
�

d�Eð�;EÞ
d�

; 0; 0;
dpzð�;EÞ

d�

�

�2ð~r?Þ�ðt� zÞ: (8)

In this first attempt we ignore the transverse momentum
contribution to the source current. Following Refs. [18], we
assume that the energy deposited is a small perturbation
and solve for the linear response of the medium:

T��’T
��
0 þ�T��; @�T

��
0 ¼0; @��T

��¼J�: (9)

T��
0 is the unperturbed energy-momentum tensor of a

homogeneous and static partonic medium in equilibrium.
The small excess �T�� is decomposed as

�T00 � ��; �T0i � gi;

�Tij ¼ �ijc
2
s��� �sð@igj þ @jgi � 2

3�ijr � ~gÞ: (10)

�� is the excess energy density, ~g is the momentum current
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FIG. 1 (color online). Dash-dotted: Total energy lost by a hard
gluon (circled) or quark by radiative, elastic, and flavor changing
processes. Solid: Energy deposited in the medium by a hard
parton which does not radiate. Dashed: The same for a virtual
parton devolving into a partonic shower.
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density, and �s ¼ �
sT is the sound attenuation length. For

the specific shear viscosity we took �
s ¼ 1

2� . We delay the

response to the source J by a time 	rel ¼ 1
mD

to account for

thermalization of the deposited energy.
In Fig. 3 we show the azimuthal projection of the energy

density jxj�� at t ¼ 5 fm=c after the parton is created, for
a single nonradiating parton (left) and a parton-initiated jet
shower (right). A gluon (bottom row) deposits more energy
than a quark (top row), due to its larger color factor that
enters both in the elastic energy loss and shower production
rate. One immediately notes that, while the basic Mach
cone structure is not changed, showering leads to an en-
hancement by a factor of 3 in the overall magnitude of the
response. For quark jets our results are qualitatively similar
to Ref. [7].

In this Letter, we have presented a consistent pQCD
based calculation of the light-cone and transverse momen-
tum (�q�, p2

T) deposited by a jet in a medium, as a
function of distance traversed. Assuming a short thermal-
ization time for the deposited energy we also computed the
hydrodynamic response. The pQCD shower has the effect
of a large part of the energy being deposited later in the
history of the jet [7] which tends to enhance the Mach
cone-like structure formed.
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FIG. 3 (color online). The linear fluid dynamical response to
the energy deposited by a single parton (left) or by a parton-
initiated shower (right), when the parton is a quark (top) or a
gluon (bottom). Note the different vertical scales.
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FIG. 2 (color online). The hp2
?i deposited by a hard gluon

(circled) or quark without radiative emission (solid) and with a
full radiative shower (dashed).
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