125 research outputs found

    Relatively oxidized conditions for diamond formation at Udachnaya (Siberia)

    Get PDF
    Thanks to the physical strength of diamonds and their relatively unreactive chemical nature, their mineral inclusions may remain exceptionally preserved from alteration processes and chemical exchanges with surrounding minerals, fluids and/or melts following diamond formation. Cr-bearing spinels are relatively common inclusions found in peridotitic diamonds and important oxybarometers providing information about the oxygen fugacity (fO2) of their source mantle rocks. Here, we investigated a magnesiochromite-olivine touching pair in a diamond from the Udachnaya kimberlite (Siberia) by in situ single-crystal X-ray diffraction and energy-domain synchrotron Mossbauer spectroscopy, aiming to constrain the physical-chemical conditions of diamond formation and to explore the redox state of this portion of the Siberian craton when the diamond was formed. The P-T-fO(2) entrapment conditions of the inclusion pair, determined by thermo- and oxybarometric analyses, are similar to 5.7(0.4) GPa and similar to 1015(50) ? (although entrapment at higher T and re-equilibration during subsequent mantle storage are also possible) and fO(2) near the enstatite-magnesite-olivine-diamond (EMOD) buffer. The determined fO(2) is similar to, or slightly more oxidized than, those of xenoliths from Udachnaya, but whilst the xenoliths last equilibrated with the surrounding mantle just prior to their entrainment in the kimberlite at similar to 360 Ma, the last equilibration of the inclusion pair is much older, occurring at 3.5-3.1, similar to 2 or similar to 1.8 Ga before final encapsulation in its host diamond. Hence, the similarity between xenoliths and inclusion fO(2) values indicates that the modern redox state of this portion of the Siberian lithosphere was likely attained relatively early after its formation and may have persisted for billions of years after diamond formation, at least at the local scale. Moreover, the oxygen fugacity determination for the inclusion pair provides direct evidence of diamond formation near the EMOD buffer and is consistent with recent models suggesting relatively oxidized, water-rich CHO fluids as the most likely parents for lithospheric diamonds

    In situ analysis of garnet inclusion in diamond using single-crystal X-ray diffraction and X-ray micro-tomography

    Get PDF
    none9A single crystal of garnet enclosed in a diamond from the Jericho kimberlite (Slave Craton, Canada) has been investigated using X-ray diffraction and X-ray micro-tomography. The novel experimental approach allowed us to determine the crystal structure of the garnet. The unit-cell edge a and fractional atomic coordinates of oxygen were used to determine the composition via an updated Margules model for garnets. The composition is Pyr(0.41(5))Alm(0.36(7))Gro(0.22(1))Uva(0.01(1)), which is indistinguishable from the eclogitic garnets found in other Jericho diamonds. We also demonstrated that residual pressures on the inclusion of up to 1 GPa do not affect significantly the determination of the garnet composition by structure refinement.noneFABRIZIO NESTOLA;M. MERLI;PAOLO NIMIS;M. PARISATTO;M. KOPYLOVA;A. DE;M. LONGO;L. ZIBERNA;M. MANGHNANINestola, Fabrizio; M., Merli; Nimis, Paolo; Parisatto, Matteo; M., Kopylova; A., De; Longo, Micaela; Ziberna, Luca; M., Manghnan

    Report on the ICDP workshop DIVE (Drilling the Ivrea–Verbano zonE)

    Get PDF
    The Ivrea–Verbano Zone is the most complete, time-integrated crust–upper mantle archive in the world. It is a unique target for assembling data on the deep crust and the Moho transition zone and testing several hypotheses of formation, evolution, and modification of the continental crust through space and time across the Earth. The ICDP workshop Drilling the Ivrea–Verbano zonE (DIVE), held in Baveno, Italy, from 1 to 5 May 2017, focused on the scientific objectives and the technical aspects of drilling and sampling in the Ivrea–Verbano Zone at depth. A total of 47 participants from 9 countries with a wide variety of scientific and/or drilling expertise attended the meeting. Discussion on the proposed targets sharpened the main research lines and led to working groups and the necessary technical details to compile the full drilling proposal. The participants of the workshop concluded that four drilling operations in the Val Sesia and Val d'Ossola crustal sections represent the scientifically most promising solution to achieve the major goals within DIVE to unravel the physico-chemical properties and architecture of the lower continental crust towards the crust–mantle (Moho) transition zone

    Single crystal elasticity of majoritic garnets: Stagnant slabs and thermal anomalies at the base of the transition zone

    Get PDF
    The elastic properties of two single crystals of majoritic garnet (Mg3.24Al1.53Si3.23O12 and Mg3.01Fe0.17Al1.68Si3.15O12), have been measured using simultaneously single-crystal X-ray diffraction and Brillouin spectroscopy in an externally heated diamond anvil cell with Ne as pressure transmitting medium at conditions up to ∼30 GPa and ∼600 K. This combination of techniques makes it possible to use the bulk modulus and unit-cell volume at each condition to calculate the absolute pressure, independently of secondary pressure calibrants. Substitution of the majorite component into pyrope garnet lowers both the bulk (Ks) and shear modulus (G). The substitution of Fe was found to cause a small but resolvable increase in Ks that was accompanied by a decrease in ∂Ks/∂P, the first pressure derivative of the bulk modulus. Fe substitution had no influence on either the shear modulus or its pressure derivative. The obtained elasticity data were used to derive a thermo-elastic model to describe Vs and Vp of complex garnet solid solutions. Using further elasticity data from the literature and thermodynamic models for mantle phase relations, velocities for mafic, harzburgitic and lherzolitic bulk compositions at the base of Earth's transition zone were calculated. The results show that Vs predicted by seismic reference models are faster than those calculated for all three types of lithologies along a typical mantle adiabat within the bottom 150 km of the transition zone. The anomalously fast seismic shear velocities might be explained if laterally extensive sections of subducted harzburgite-rich slabs pile up at the base of the transition zone and lower average mantle temperatures within this depth range

    Single-crystal elasticity of majoritic garnets: stagnant slabs and thermal anomalies at the base of the transition zone

    Get PDF
    The elastic properties of two single crystals of majoritic garnet (Mg3.24Al1.53Si3.23O12 and Mg3.01Fe0.17Al1.68Si3.15O12), have been measured using simultaneously single-crystal X-ray diffraction and Brillouin spectroscopy in an externally heated diamond anvil cell with Ne as pressure transmitting medium at conditions up to 3c30 GPa and 3c600 K. This combination of techniques makes it possible to use the bulk modulus and unit-cell volume at each condition to calculate the absolute pressure, independently of secondary pressure calibrants. Substitution of the majorite component into pyrope garnet lowers both the bulk (Ks) and shear modulus (G). The substitution of Fe was found to cause a small but resolvable increase in Ks that was accompanied by a decrease in 02Ks/ 02P, the first pressure derivative of the bulk modulus. Fe substitution had no influence on either the shear modulus or its pressure derivative. The obtained elasticity data were used to derive a thermo-elastic model to describe Vs and Vp of complex garnet solid solutions. Using further elasticity data from the literature and thermodynamic models for mantle phase relations, velocities for mafic, harzburgitic and lherzolitic bulk compositions at the base of Earth's transition zone were calculated. The results show that Vs predicted by seismic reference models are faster than those calculated for all three types of lithologies along a typical mantle adiabat within the bottom 150 km of the transition zone. The anomalously fast seismic shear velocities might be explained if laterally extensive sections of subducted harzburgite-rich slabs pile up at the base of the transition zone and lower average mantle temperatures within this depth range

    Structural Analysis of a Peptide Fragment of Transmembrane Transporter Protein Bilitranslocase

    Get PDF
    Using a combination of genomic and post-genomic approaches is rapidly altering the number of identified human influx carriers. A transmembrane protein bilitranslocase (TCDB 2.A.65) has long attracted attention because of its function as an organic anion carrier. It has also been identified as a potential membrane transporter for cellular uptake of several drugs and due to its implication in drug uptake, it is extremely important to advance the knowledge about its structure. However, at present, only the primary structure of bilitranslocase is known. In our work, transmembrane subunits of bilitranslocase were predicted by a previously developed chemometrics model and the stability of these polypeptide chains were studied by molecular dynamics (MD) simulation. Furthermore, sodium dodecyl sulfate (SDS) micelles were used as a model of cell membrane and herein we present a high-resolution 3D structure of an 18 amino acid residues long peptide corresponding to the third transmembrane part of bilitranslocase obtained by use of multidimensional NMR spectroscopy. It has been experimentally confirmed that one of the transmembrane segments of bilitranslocase has alpha helical structure with hydrophilic amino acid residues oriented towards one side, thus capable of forming a channel in the membrane

    Suicide prevention for youth - a mental health awareness program: lessons learned from the Saving and Empowering Young Lives in Europe (SEYLE) intervention study.

    Get PDF
    ABSTRACT: BACKGROUND: The Awareness program was designed as a part of the EU-funded Saving and Empowering Young Lives in Europe (SEYLE) intervention study to promote mental health of adolescents in 11 European countries by helping them to develop problem-solving skills and encouraging them to self-recognize the need for help as well as how to help peers in need. METHODS: For this descriptive study all coordinators of the SEYLE Awareness program answered an open-ended evaluation questionnaire at the end of the project implementation. Their answers were synthesized and analyzed and are presented here. RESULTS: The results show that the program cultivated peer understanding and support. Adolescents not only learned about mental health by participating in the Awareness program, but the majority of them also greatly enjoyed the experience. CONCLUSIONS: Recommendations for enhancing the successes of mental health awareness programs are presented. Help and cooperation from schools, teachers, local politicians and other stakeholders will lead to more efficacious future programs

    Micro-Raman study of crichtonite group minerals enclosed into mantle garnet

    Get PDF
    We report the first comprehensive micro-Raman study of crichtonite group minerals (CGM) as inclusions in pyropic garnet grains from peridotite and pyroxenite mantle xenoliths of the Yakutian kimberlites as well as in garnet xenocrysts from the Aldan shield lamprophyres (Russia). The CGM form (i) morphologically oriented needles, lamellae, and short prisms and (ii) optically unoriented subhedral to euhedral grains, either single or intergrown with other minerals. We considered common mantle-derived CGM species (like loveringite, lindsleyite, and their analogues), with Ca, Ba, or Sr dominating in the dodecahedral A site and Zr or Fe in the octahedral B site. The Raman bands at the region of 600–830 cm−1 are indicative of CGM and their crystal-chemical distinction, although the intensity and shape of the bands appear to be dependent on laser beam power and wavelength. The factor-group analysis based on the loveringite crystal structure showed the octahedral and tetrahedral cation groups with 18f and 6c Wyckoff positions, namely, dominantly TiO6 and to a lower extent CrO6, MgO4, and FeO4 groups, to be the major contributors to the Raman spectral features. The ionic groups with dodecahedral (M0) and octahedral (M1) coordination are inactive for Raman scattering while active in infrared absorption. A number of observed Raman modes in the CGM spectra are several times lower than that predicted by the factor group analysis. The noticed broadening of modes in the CGM Raman spectra may result from a combining of bands at the narrow frequency shift regions. Solid solution behavior, luminescence, and partial metamictization of the CGM may exert additional influence on the Raman band shape. The Raman spectral features showed CGM to be accurately identified and distinguished from other Ti-, Fe-, Cr-, and Zr-containing oxides (e.g., ilmenite or those of spinel and magnetoplumbite groups) occurring as accessory mantle minerals. © 2020 The Authors. Journal of Raman Spectroscopy published by John Wiley & Sons LtdRussian Science Foundation, RSF: 18‐77‐10062Council on grants of the President of the Russian FederationThis study was supported by the Russian Science Foundation (Grant 18‐77‐10062). The equipment of the Ural Center for Shared Use «Modern Nanotechnology», Ural Federal University, and the Analytical Center for Multi‐elemental and Isotope Research, IGM, was used. Sampling was supported by the Russian Federation state assignment project of IGM. We are grateful to Nikolai V. Sobolev for Samples O‐173, O‐39, and O‐264. Vladimir N. Korolyuk, Elena N. Nigmatulina (IGM), and Allan Patchen (UT) are highly appreciated for the help with EMP analyses. We express our sincere thanks to F. Nestola and an anonymous reviewer for their thorough reviews and helpful suggestions, and to C. Marshall for regardful editorial handling of the manuscript on every stage of its revision

    New Zealand blackcurrant extract enhances fat oxidation during prolonged cycling in endurance-trained females.

    Get PDF
    PURPOSE: New Zealand blackcurrant (NZBC) extract has previously been shown to increase fat oxidation during prolonged exercise, but this observation is limited to males. We examined whether NZBC intake also increases fat oxidation during prolonged exercise in females, and whether this was related to greater concentrations of circulating fatty acids. METHODS: In a randomised, crossover, double-blind design, 16 endurance-trained females (age: 28 ± 8 years, BMI: 21.3 ± 2.1 kg·m-2, VO2max: 43.7 ± 1.1 ml·kg-1·min-1) ingested 600 mg·day-1NZBC extract (CurraNZ™) or placebo (600 mg·day-1microcrystalline cellulose) for 7 days. On day 7, participants performed 120 min cycling at 65% VO2max, using online expired air sampling with blood samples collected at baseline and at 15 min intervals throughout exercise for analysis of glucose, NEFA and glycerol. RESULTS: NZBC extract increased mean fat oxidation by 27% during 120 min moderate-intensity cycling compared to placebo (P = 0.042), and mean carbohydrate oxidation tended to be lower (P = 0.063). Pre-exercise, plasma NEFA (P = 0.034) and glycerol (P = 0.051) concentrations were greater following NZBC intake, although there was no difference between conditions in the exercise-induced increase in plasma NEFA and glycerol concentrations (P > 0.05). Mean fat oxidation during exercise was moderately associated with pre-exercise plasma NEFA concentrations (r = 0.45, P = 0.016). CONCLUSIONS: Intake of NZBC extract for 7 days elevated resting concentrations of plasma NEFA and glycerol, indicative of higher lipolytic rates, and this may underpin the observed increase in fat oxidation during prolonged cycling in endurance-trained females

    New Zealand Blackcurrant Extract Improves Cycling Performance and Fat Oxidation in Cyclists

    Get PDF
    PURPOSE: Blackcurrant intake increases peripheral blood flow in humans, potentially by anthocyanin-induced vasodilation which may affect substrate delivery and exercise performance. We examined the effects of New Zealand blackcurrant (NZBC) extract on substrate oxidation, cycling time-trial performance and plasma lactate responses following the time-trial in trained cyclists. METHODS: Using a randomized, double-blind, crossover design, fourteen healthy men (age: 38 ± 13 years, height: 178 ± 4 cm, body mass: 77 ± 9 kg, V?O2max: 53 ± 6 ml·kg-1·min-1, mean ± SD) ingested NZBC extract (300 mg?day-1 CurraNZ™ containing 105 mg anthocyanin) or placebo (PL, 300 mg microcrystalline cellulose M102) for 7-days (washout 14-days). On day 7, participants performed 30 min of cycling (3x10 min at 45, 55 and 65% V?O2max), followed by a 16.1 km time-trial with lactate sampling during a 20-minute passive recovery. RESULTS: NZBC extract increased fat oxidation at 65% V?O2max by 27% (P < 0.05) and improved 16.1 km time-trial performance by 2.4% (NZBC: 1678 ± 108 s, PL: 1722 ± 131 s, P < 0.05). Plasma lactate was higher with NZBC extract immediately following the time-trial (NZBC: 7.06 ± 1.73 mmol?L-1, PL: 5.92 ± 1.58 mmol?L-1 P < 0.01). CONCLUSIONS: Seven days intake of New Zealand blackcurrant extract improves 16.1 km cycling time-trial performance and increases fat oxidation during moderate intensity cycling
    corecore