1,043 research outputs found

    All-Optical Production of Chromium Bose-Einstein Condensates

    Full text link
    We report on the production of ^52Cr Bose Einstein Condensates (BEC) with an all-optical method. We first load 5.10^6 metastable chromium atoms in a 1D far-off-resonance optical trap (FORT) from a Magneto Optical Trap (MOT), by combining the use of Radio Frequency (RF) frequency sweeps and depumping towards the ^5S_2 state. The atoms are then pumped to the absolute ground state, and transferred into a crossed FORT in which they are evaporated. The fast loading of the 1D FORT (35 ms 1/e time), and the use of relatively fast evaporative ramps allow us to obtain in 20 s about 15000 atoms in an almost pure condensate.Comment: 4 pages, 4 figure

    Noncommutative Einstein-AdS Gravity in three Dimensions

    Get PDF
    We present a Lorentzian version of three-dimensional noncommutative Einstein-AdS gravity by making use of the Chern-Simons formulation of pure gravity in 2+1 dimensions. The deformed action contains a real, symmetric metric and a real, antisymmetric tensor that vanishes in the commutative limit. These fields are coupled to two abelian gauge fields. We find that this theory of gravity is invariant under a class of transformations that reduce to standard diffeomorphisms once the noncommutativity parameter is set to zero.Comment: 11 pages, LaTeX, minor errors corrected, references adde

    Critical regime of two dimensional Ando model: relation between critical conductance and fractal dimension of electronic eigenstates

    Full text link
    The critical two-terminal conductance gcg_c and the spatial fluctuations of critical eigenstates are investigated for a disordered two dimensional model of non-interacting electrons subject to spin-orbit scattering (Ando model). For square samples, we verify numerically the relation σc=1/[2π(2−D(1))]e2/h\sigma_c=1/[2\pi(2-D(1))] e^2/h between critical conductivity σc=gc=(1.42±0.005)e2/h\sigma_c=g_c=(1.42\pm 0.005) e^2/h and the fractal information dimension of the electron wave function, D(1)=1.889±0.001D(1)=1.889\pm 0.001. Through a detailed numerical scaling analysis of the two-terminal conductance we also estimate the critical exponent Îœ=2.80±0.04\nu=2.80\pm 0.04 that governs the quantum phase transition.Comment: IOP Latex, 7 figure

    A Very Low Resource Language Speech Corpus for Computational Language Documentation Experiments

    Full text link
    Most speech and language technologies are trained with massive amounts of speech and text information. However, most of the world languages do not have such resources or stable orthography. Systems constructed under these almost zero resource conditions are not only promising for speech technology but also for computational language documentation. The goal of computational language documentation is to help field linguists to (semi-)automatically analyze and annotate audio recordings of endangered and unwritten languages. Example tasks are automatic phoneme discovery or lexicon discovery from the speech signal. This paper presents a speech corpus collected during a realistic language documentation process. It is made up of 5k speech utterances in Mboshi (Bantu C25) aligned to French text translations. Speech transcriptions are also made available: they correspond to a non-standard graphemic form close to the language phonology. We present how the data was collected, cleaned and processed and we illustrate its use through a zero-resource task: spoken term discovery. The dataset is made available to the community for reproducible computational language documentation experiments and their evaluation.Comment: accepted to LREC 201

    Supraorganized Collagen Enhances Schwann Cell Reactivity And Organization In Vitro.

    Get PDF
    We investigated the reactivity and expression of basal lamina collagen by Schwann cells (SCs) cultivated on a supraorganized bovine-derived collagen substrate. SC cultures were obtained from sciatic nerves of neonatal Sprague-Dawley rats and seeded on 24-well culture plates containing collagen substrate. The homogeneity of the cultures was evaluated with an SC marker antibody (anti-S-100). After 1 week, the cultures were fixed and processed for immunocytochemistry by using antibodies against type IV collagen, S-100 and p75NTR (pan neurotrophin receptor) and for scanning electron microscopy (SEM). Positive labeling with antibodies to the cited molecules was observed, indicating that the collagen substrate stimulates SC alignment and adhesion (collagen IV labeling - organized collagen substrate: 706.33 ± 370.86, non-organized collagen substrate: 744.00 ± 262.09; S-100 labeling - organized collagen: 3809.00 ± 120.28, non-organized collagen: 3026.00 ± 144.63, P < 0.05) and reactivity (p75NTR labeling - organized collagen: 2156.33 ± 561.78, non-organized collagen: 1424.00 ± 405.90, P < 0.05; means ± standard error of the mean in absorbance units). Cell alignment and adhesion to the substrate were confirmed by SEM analysis. The present results indicate that the collagen substrate with an aligned suprastructure, as seen by polarized light microscopy, provides an adequate scaffold for SCs, which in turn may increase the efficiency of the nerve regenerative process after in vivo repair.44682-

    Advantages of the recursive operability analysis in updating the risk assessment

    Get PDF
    With the introduction of new regulations and sustainable technologies, revamping and upgrading already existing chemical plants is nowadays an important element in the framework of process engineering. Such important modifications must come along in parallel improvement of process safety. In this sense, risk assessment is a tool that should be versatile and easy to update by definition. However, even the most common methods currently used for accidental scenarios identification and risk assessment estimation (such as HazOp) may prove to be very time-consuming when discussing about safety from process modifications. The availability of a reliable and easy-to-update tool for safety engineering is crucial for process industries. In this work, we compare a risk analysis on a chemical plant subject of modifications performed with two different tools: HazOp and FTA vs Recursive Operability Analysis (ROA) and FTA. Both techniques have been applied to a tank dedicated to dust mixing that was subject of process modifications. Both methods come to the same conclusions, highlighting new failures and process criticalities, associated with the introduction of flow alarms and interlocks in case of excessive depressurizing. It is shown that the Recursive Operability Analysis, with its cause-consequence structure tied with process variable interactions, is much more effective in a risk assessment update

    Superfield covariant analysis of the divergence structure of noncommutative supersymmetric QED4_4

    Full text link
    Commutative supersymmetric Yang-Mills is known to be renormalizable for N=1,2{\cal N} = 1, 2, while finite for N=4{\cal N} = 4. However, in the noncommutative version of the model (NCSQED4_4) the UV/IR mechanism gives rise to infrared divergences which may spoil the perturbative expansion. In this work we pursue the study of the consistency of NCSQED4_4 by working systematically within the covariant superfield formulation. In the Landau gauge, it has already been shown for N=1{\cal N} = 1 that the gauge field two-point function is free of harmful UV/IR infrared singularities, in the one-loop approximation. Here we show that this result holds without restrictions on the number of allowed supersymmetries and for any arbitrary covariant gauge. We also investigate the divergence structure of the gauge field three-point function in the one-loop approximation. It is first proved that the cancellation of the leading UV/IR infrared divergences is a gauge invariant statement. Surprisingly, we have also found that there exist subleading harmful UV/IR infrared singularities whose cancellation only takes place in a particular covariant gauge. Thus, we conclude that these last mentioned singularities are in the gauge sector and, therefore, do not jeopardize the perturbative expansion and/or the renormalization of the theory.Comment: 36 pages, 11 figures. Minor correction
    • 

    corecore