524 research outputs found

    China’s Comprehensive Strategic and Cooperative Partnership with Africa

    Get PDF
    Convened in South Africa in December 2015, the 6th Summit Meeting of the Forum on China–Africa Cooperation (FOCAC) culminated in the Johannesburg Action Plan under the theme ‘China–Africa Progressing Together: Win-Win Cooperation for Common Development’. An accompanying declaration upgraded FOCAC to a ‘new type of comprehensive strategic and cooperative partnership’, linking Africa’s transformation aspirations to China’s own ongoing transformation. This IDS Policy Briefing investigates the content of the Johannesburg Action Plan; examines its geopolitical, intellectual and systemic dimensions; and identifies wider policy implications.UK Department for International Developmen

    Effects of Various Flavonoids on the -Synuclein Fibrillation Process

    Get PDF
    α-Synuclein aggregation and fibrillation are closely associated with the formation of Lewy bodies in neurons and are implicated in the causative pathogenesis of Parkinson's disease and other synucleinopathies. Currently, there is no approved therapeutic agent directed toward preventing the protein aggregation, which has been recently shown to have a key role in the cytotoxic nature of amyloidogenic proteins. Flavonoids, known as plant pigments, belong to a broad family of polyphenolic compounds. Over 4,000 flavonoids have been identified from various plants and foodstuffs derived from plants and have been demonstrated as potential neuroprotective agents. In this study 48 flavonoids belonging to several classes with structures differing in the position of double bonds and ring substituents were tested for their ability to inhibit the fibrillation of α-synuclein in vitro. A variety of flavonoids inhibited α-synuclein fibrillation, and most of the strong inhibitory flavonoids were also found to disaggregate preformed fibrils

    Los estímulos contextuales visuales y auditivos impactan de manera diferenciada el control inhibitorio relacionado con el alcohol

    Get PDF
    Representing a more immersive testing environment, the current study exposed individuals to both alcohol-related visual and auditory cues to assess their respective impact on alcohol-related inhibitory control. It examined further whether individual variation in alcohol consumption and trait effortful control may predict inhibitory control performance. Method: Twenty-five U.K. university students (Mage = 23.08, SD = 8.26) completed an anti-saccade eye-tracking task and were instructed to look towards (pro) or directly away (anti) from alcohol-related and neutral visual stimuli. Short alcohol-related sound cues (bar audio) were played on 50% of trials and were compared with responses where no sounds were played. Results: Findings indicate that participants launched more incorrect saccades towards alcohol-related visual stimuli on anti-saccade trials, and responded quicker to alcohol on pro-saccade trials. Alcohol-related audio cues reduced latencies for both pro- and anti-saccade trials and reduced anti-saccade error rates to alcohol-related visual stimuli. Controlling for trait effortful control and problem alcohol consumption removed these effects. Conclusion: These findings suggest that alcohol-related visual cues may be associated with reduced inhibitory control, evidenced by increased errors and faster response latencies. The presentation of alcohol-related auditory cues, however, appears to enhance performance accuracy. It is postulated that auditory cues may re-contextualise visual stimuli into a more familiar setting that reduces their saliency and lessens their attentional pull

    The effect of celecoxib on tumor growth in ovarian cancer cells and a genetically engineered mouse model of serous ovarian cancer

    Get PDF
    Our objective was to evaluate the effect of the COX-2 inhibitor, celecoxib, on (1) proliferation and apoptosis in human ovarian cancer cell lines and primary cultures of ovarian cancer cells, and (2) inhibition of tumor growth in a genetically engineered mouse model of serous ovarian cancer under obese and non-obese conditions. Celecoxib inhibited cell proliferation in three ovarian cancer cell lines and five primary cultures of human ovarian cancer after 72 hours of exposure. Treatment with celecoxib resulted in G1 cell cycle arrest, induction of apoptosis, inhibition of cellular adhesion and invasion and reduction of expression of hTERT mRNA and COX-2 protein in all of the ovarian cancer cell lines. In the KpB mice fed a high fat diet (obese) and treated with celecoxib, tumor weight decreased by 66% when compared with control animals. Among KpB mice fed a low fat diet (non-obese), tumor weight decreased by 46% after treatment with celecoxib. In the ovarian tumors from obese and non-obese KpB mice, treatment with celecoxib as compared to control resulted in decreased proliferation, increased apoptosis and reduced COX-2 and MMP9 protein expression, as assessed by immunohistochemistry. Celecoxib strongly decreased the serum level of VEGF and blood vessel density in the tumors from the KpB ovarian cancer mouse model under obese and non-obese conditions. This work suggests that celecoxib may be a novel chemotherapeutic agent for ovarian cancer prevention and treatment and be potentially beneficial in both obese and non-obese women

    The HMG-CoA reductase inhibitor, simvastatin, exhibits anti-metastatic and anti-tumorigenic effects in ovarian cancer

    Get PDF
    Ovarian cancer is the 5th leading cause of cancer death among women in the United States. The mevalonate pathway is thought to be a potential oncogenic pathway in the pathogenesis of ovarian cancer. Simvastatin, a 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR) inhibitor, is a widely used drug for inhibiting the synthesis of cholesterol and may also have anti-tumorigenic activity. Our goal was to evaluate the effects of simvastatin on ovarian cancer cell lines, primary cultures of ovarian cancer cells and in an orthotopic ovarian cancer mouse model. Simvastatin significantly inhibited cellular proliferation, induced cell cycle G1 arrest and apoptosis, and caused cellular stress via reduction in the enzymatic activity of HMGCR and inhibition of the MAPK and mTOR pathways in ovarian cancer cells. Furthermore, simvastatin induced DNA damage and reduced cell adhesion and invasion. Simvastatin also exerted anti-proliferative effects on primary cell cultures of ovarian cancer. Treatment with simvastatin in an orthotopic mouse model reduced ovarian tumor growth, coincident with decreased Ki-67, HMGCR, phosphorylated-Akt and phosphorylated-p42/44 protein expression. Our findings demonstrate that simvastatin may have therapeutic benefit for ovarian cancer treatment and be worthy of further exploration in clinical trials

    Parabens as Urinary Biomarkers of Exposure in Humans

    Get PDF
    BACKGROUND: Parabens appear frequently as antimicrobial preservatives in cosmetic products, in pharmaceuticals, and in food and beverage processing. In vivo and in vitro studies have revealed weak estrogenic activity of some parabens. Widespread use has raised concerns about the potential human health risks associated with paraben exposure. OBJECTIVES: Assessing human exposure to parabens usually involves measuring in urine the conjugated or free species of parabens or their metabolites. In animals, parabens are mostly hydrolyzed to p-hydroxybenzoic acid and excreted in the urine as conjugates. Still, monitoring urinary concentrations of p-hydroxybenzoic acid is not necessarily the best way to assess exposure to parabens. p-Hydroxybenzoic acid is a nonspecific biomarker, and the varying estrogenic bioactivities of parabens require specific biomarkers. Therefore, we evaluated the use of free and conjugated parent parabens as new biomarkers for human exposure to these compounds. RESULTS: We measured the urinary concentrations of methyl, ethyl, n-propyl, butyl (n- and iso-), and benzyl parabens in a demographically diverse group of 100 anonymous adults. We detected methyl and n-propyl parabens at the highest median concentrations (43.9 ng/mL and 9.05 ng/mL, respectively) in nearly all (> 96%) of the samples. We also detected other parabens in more than half of the samples (ethyl, 58%; butyl, 69%). Most important, however, we found that parabens in urine appear predominantly in their conjugated forms. CONCLUSIONS: The results, demonstrating the presence of urinary conjugates of parabens in humans, suggest that such conjugated parabens could be used as exposure biomarkers. Additionally, the fact that conjugates appear to be the main urinary products of parabens may be important for risk assessment

    Activating transcription factor-4 promotes mineralization in vascular smooth muscle cells

    Get PDF
    Emerging evidence indicates that upregulation of the ER stress–induced pro-osteogenic transcription factor ATF4 plays an important role in vascular calcification, a common complication in patients with aging, diabetes, and chronic kidney disease (CKD). In this study, we demonstrated the pathophysiological role of ATF4 in vascular calcification using global Atf4 KO, smooth muscle cell–specific (SMC-specific) Atf4 KO, and transgenic (TG) mouse models. Reduced expression of ATF4 in global ATF4-haplodeficient and SMC-specific Atf4 KO mice reduced medial and atherosclerotic calcification under normal kidney and CKD conditions. In contrast, increased expression of ATF4 in SMC-specific Atf4 TG mice caused severe medial and atherosclerotic calcification. We further demonstrated that ATF4 transcriptionally upregulates the expression of type III sodium-dependent phosphate cotransporters (PiT1 and PiT2) by interacting with C/EBPβ. These results demonstrate that the ER stress effector ATF4 plays a critical role in the pathogenesis of vascular calcification through increased phosphate uptake in vascular SMCs
    corecore