6,211 research outputs found

    Spectropolarimetry of the Type IIb Supernova 2001ig

    Get PDF
    We present spectropolarimetric observations of the Type IIb SN 2001ig in NGC 7424; conducted with the ESO VLT FORS1 on 2001 Dec 16, 2002 Jan 3 and 2002 Aug 16 or 13, 31 and 256 days post-explosion. These observations are at three different stages of the SN evolution: (1) The hydrogen-rich photospheric phase, (2) the Type II to Type Ib transitional phase and (3) the nebular phase. At each of these stages, the observations show remarkably different polarization properties as a function of wavelength. We show that the degree of interstellar polarization is 0.17%. The low intrinsic polarization (~0.2%) at the first epoch is consistent with an almost spherical (<10% deviation from spherical symmetry) hydrogen dominated ejecta. Similar to SN 1987A and to Type IIP SNe, a sharp increase in the degree of the polarization (~1%) is observed when the outer hydrogen layer becomes optically thin by day 31; only at this epoch is the polarization well described by a ``dominant axis.'' The polarization angle of the data shows a rotation through ~40 degrees between the first and second epochs, indicating that the asymmetries of the first epoch were not directly coupled with those observed at the second epoch. For the most polarized lines, we observe wavelength-dependent loop structures in addition to the dominant axis on the Q-U plane. We show that the polarization properties of Type IIb SNe are roughly similar to one another, but with significant differences arising due to line blending effects especially with the high velocities observed for SN 2001ig. This suggests that the geometry of SN 2001ig is related to SN 1993J and that these events may have arisen from a similar binary progenitor system.Comment: 42 pages, 12 figures (figs. 11 and 12 are both composed of four subpanels, figs. 6,7,8,11 and 12 are in color, fig. 1 is low res and a high res version is available at http://www.as.utexas.edu/~jrm/), ApJ Accepte

    Pre-Maximum Spectropolarimetry of the Type Ia SN 2004dt

    Get PDF
    We report observations of SN 2004dt obtained with the Very Large Telescope of the European Southern Observatory on August 13.30, 2004 when the supernova was more than a week before optical maximum. SN 2004dt showed strong lines of \ion{O}{1}, \ion{Mg}{2}, \ion{Si}{2}, and \ion{Ca}{2} with typical velocities of absorption minimum around 17,000 \kms. The line profiles show material moving at velocities as high as 25,000 \kms in these lines. The observations also reveal absorption lines from \ion{S}{2} and \ion{Si}{3} with a velocity of only 11,000 \kms. The highest velocity in the \ion{S}{2} features can be traced no higher than 15,000 \kms, much lower than those of O, Mg, Si, and Ca. SN 2004dt has a polarization spectrum unlike any previously observed. The variation of the polarization across some \ion{Si}{2} lines approaches 2%, making SN 2004dt the most highly polarized SN Ia ever observed. In contrast, the strong line of O I at 777.4 nm shows little or no polarization signature. The degree of polarization points to a richly-structured partially burned silicon layer with substantial departure from spherical symmetry. A geometry that would account for the observations is one in which the distribution of oxygen is essentially spherically symmetric, but with bubbles of intermediate-mass elements with significant opacity within the oxygen substrate.Comment: Submitted to Ap

    Fission of a multiphase membrane tube

    Get PDF
    A common mechanism for intracellular transport is the use of controlled deformations of the membrane to create spherical or tubular buds. While the basic physical properties of homogeneous membranes are relatively well-known, the effects of inhomogeneities within membranes are very much an active field of study. Membrane domains enriched in certain lipids in particular are attracting much attention, and in this Letter we investigate the effect of such domains on the shape and fate of membrane tubes. Recent experiments have demonstrated that forced lipid phase separation can trigger tube fission, and we demonstrate how this can be understood purely from the difference in elastic constants between the domains. Moreover, the proposed model predicts timescales for fission that agree well with experimental findings

    Wetting films on chemically heterogeneous substrates

    Full text link
    Based on a microscopic density functional theory we investigate the morphology of thin liquidlike wetting films adsorbed on substrates endowed with well-defined chemical heterogeneities. As paradigmatic cases we focus on a single chemical step and on a single stripe. In view of applications in microfluidics the accuracy of guiding liquids by chemical microchannels is discussed. Finally we give a general prescription of how to investigate theoretically the wetting properties of substrates with arbitrary chemical structures.Comment: 56 pages, RevTeX, 20 Figure

    Analysis of the Flux and Polarization Spectra of the Type Ia Supernova SN 2001el: Exploring the Geometry of the High-velocity Ejecta

    Full text link
    SN 2001el is the first normal Type Ia supernova to show a strong, intrinsic polarization signal. In addition, during the epochs prior to maximum light, the CaII IR triplet absorption is seen distinctly and separately at both normal photospheric velocities and at very high velocities. The high-velocity triplet absorption is highly polarized, with a different polarization angle than the rest of the spectrum. The unique observation allows us to construct a relatively detailed picture of the layered geometrical structure of the supernova ejecta: in our interpretation, the ejecta layers near the photosphere (v \approx 10,000 km/s) obey a near axial symmetry, while a detached, high-velocity structure (v \approx 18,000-25,000 km/s) with high CaII line opacity deviates from the photospheric axisymmetry. By partially obscuring the underlying photosphere, the high-velocity structure causes a more incomplete cancellation of the polarization of the photospheric light, and so gives rise to the polarization peak and rotated polarization angle of the high-velocity IR triplet feature. In an effort to constrain the ejecta geometry, we develop a technique for calculating 3-D synthetic polarization spectra and use it to generate polarization profiles for several parameterized configurations. In particular, we examine the case where the inner ejecta layers are ellipsoidal and the outer, high-velocity structure is one of four possibilities: a spherical shell, an ellipsoidal shell, a clumped shell, or a toroid. The synthetic spectra rule out the spherical shell model, disfavor a toroid, and find a best fit with the clumped shell. We show further that different geometries can be more clearly discriminated if observations are obtained from several different lines of sight.Comment: 14 pages (emulateapj5) plus 18 figures, accepted by The Astrophysical Journa

    Shapes, contact angles, and line tensions of droplets on cylinders

    Full text link
    Using an interface displacement model we calculate the shapes of nanometer-size liquid droplets on homogeneous cylindrical surfaces. We determine effective contact angles and line tensions, the latter defined as excess free energies per unit length associated with the two contact lines at the ends of the droplet. The dependences of these quantities on the cylinder radius and on the volume of the droplets are analyzed.Comment: 26 pages, RevTeX, 10 Figure

    Cell arrest and cell death in mammalian preimplantation development

    Get PDF
    The causes, modes, biological role and prospective significance of cell death in preimplantation development in humans and other mammals are still poorly understood. Early bovine embryos represent a very attractive experimental model for the investigation of this fundamental and important issue. To obtain reference data on the temporal and spatial occurrence of cell death in early bovine embryogenesis, three-dimensionally preserved embryos of different ages and stages of development up to hatched blastocysts were examined in toto by confocal laser scanning microscopy. In parallel, transcript abundance profiles for selected apoptosis-related genes were analyzed by real-time reverse transcriptase-polymerase chain reaction. Our study documents that in vitro as well as in vivo, the first four cleavage cycles are prone to a high failure rate including different types of permanent cell cycle arrest and subsequent non-apoptotic blastomere death. In vitro produced and in vivo derived blastocysts showed a significant incidence of cell death in the inner cell mass (ICM), but only in part with morphological features of apoptosis. Importantly, transcripts for CASP3, CASP9, CASP8 and FAS/FASLG were not detectable or found at very low abundances. In vitro and in vivo, errors and failures of the first and the next three cleavage divisions frequently cause immediate embryo death or lead to aberrant subsequent development, and are the main source of developmental heterogeneity. A substantial occurrence of cell death in the ICM even in fast developing blastocysts strongly suggests a regular developmentally controlled elimination of cells, while the nature and mechanisms of ICM cell death are unclear. Morphological findings as well as transcript levels measured for important apoptosis-related genes are in conflict with the view that classical caspase-mediated apoptosis is the major cause of cell death in early bovine development

    Erythropoietin Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy

    Get PDF
    Experimental studies targeting traumatic brain injury (TBI) have reported that erythropoietin (EPO) is an endogenous neuroprotectant in multiple models. In addition to its neuroprotective effects, it has also been shown to enhance reparative processes including angiogenesis and neurogenesis. Based on compelling pre-clinical data, EPO was tested by the Operation Brain Trauma Therapy (OBTT) consortium to evaluate therapeutic potential in multiple TBI models along with biomarker assessments. Based on the pre-clinical TBI literature, two doses of EPO (5000 and 10,000 IU/kg) were tested given at 15 min after moderate fluid percussion brain injury (FPI), controlled cortical impact (CCI), or penetrating ballistic-like brain injury (PBBI) with subsequent behavioral, histopathological, and biomarker outcome assessments. There was a significant benefit on beam walk with the 5000 IU dose in CCI, but no benefit on any other motor task across models in OBTT. Also, no benefit of EPO treatment across the three TBI models was noted using the Morris water maze to assess cognitive deficits. Lesion volume analysis showed no treatment effects after either FPI or CCI; however, with the 5000 IU/kg dose of EPO, a paradoxical increase in lesion volume and percent hemispheric tissue loss was seen after PBBI. Biomarker assessments included measurements of glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase-L1 (UCH-L1) in blood at 4 or 24 h after injury. No treatment effects were seen on biomarker levels after FPI, whereas treatment at either dose exacerbated the increase in GFAP at 24 h in PBBI but attenuated 24-4 h delta UCH-L1 levels at high dose in CCI. Our data indicate a surprising lack of efficacy of EPO across three established TBI models in terms of behavioral, histopathological, and biomarker assessments. Although we cannot rule out the possibility that other doses or more prolonged treatment could show different effects, the lack of efficacy of EPO reduced enthusiasm for its further investigation in OBTT

    Infrared Behaviour of The Gluon Propagator in Non-Equilibrium Situations

    Get PDF
    The infrared behaviour of the medium modified gluon propagator in non-equilibrium situations is studied in the covariant gauge using the Schwinger-Keldysh closed-time path formalism. It is shown that the magnetic screening mass is non-zero at the one loop level whenever the initial gluon distribution function is non isotropic with the assumption that the distribution function of the gluon is not divergent at zero transverse momentum. For isotropic gluon distribution functions, such as those describing local equilibrium, the magnetic mass at one loop level is zero which is consistent with finite temperature field theory results. Assuming that a reasonable initial gluon distribution function can be obtained from a perturbative QCD calculation of minijets, we determine these out of equilibrium values for the initial magnetic and Debye screening masses at energy densities appropriate to RHIC and LHC. We also compare the magnetic masses obtained here with those obtained using finite temperature lattice QCD methods at similar temperatures at RHIC and LHC.Comment: 21 pages latex, 4 figures, final version to be published in Phys. Rev.

    Distinguishing among Technicolor/Warped Scenarios in Dileptons

    Get PDF
    Models of dynamical electroweak symmetry breaking usually include new spin-1 resonances, whose couplings and masses have to satisfy electroweak precision tests. We propose to use dilepton searches to probe the underlying structure responsible for satisfying these. Using the invariant mass spectrum and charge asymmetry, we can determine the number, parity, and isospin of these resonances. We pick three models of strong/warped symmetry breaking, and show that each model produces specific features that reflect this underlying structure of electroweak symmetry breaking and cancellations.Comment: Added missing referenc
    • 

    corecore