471 research outputs found

    Functional anatomy of the masking level difference, an fMRI study

    Get PDF
    Introduction: Masking level differences (MLDs) are differences in the hearing threshold for the detection of a signal presented in a noise background, where either the phase of the signal or noise is reversed between ears. We use N0/Nπ to denote noise presented in-phase/out-of-phase between ears and S0/Sπ to denote a 500 Hz sine wave signal as in/out-of-phase. Signal detection level for the noise/signal combinations N0Sπ and NπS0 is typically 10-20 dB better than for N0S0. All combinations have the same spectrum, level, and duration of both the signal and the noise. Methods: Ten participants (5 female), age: 22-43, with N0Sπ-N0S0 MLDs greater than 10 dB, were imaged using a sparse BOLD fMRI sequence, with a 9 second gap (1 second quiet preceding stimuli). Band-pass (400-600 Hz) noise and an enveloped signal (.25 second tone burst, 50% duty-cycle) were used to create the stimuli. Brain maps of statistically significant regions were formed from a second-level analysis using SPM5. Results: The contrast NπS0- N0Sπ had significant regions of activation in the right pulvinar, corpus callosum, and insula bilaterally. The left inferior frontal gyrus had significant activation for contrasts N0Sπ-N0S0 and NπS0-N0S0. The contrast N0S0-N0Sπ revealed a region in the right insula, and the contrast N0S0-NπS0 had a region of significance in the left insula. Conclusion: Our results extend the view that the thalamus acts as a gating mechanism to enable dichotic listening, and suggest that MLD processing is accomplished through thalamic communication with the insula, which communicate across the corpus callosum to either enhance or diminish the binaural signal (depending on the MLD condition). The audibility improvement of the signal with both MLD conditions is likely reflected by activation in the left inferior frontal gyrus, a late stage in the what/where model of auditory processing. © 2012 Wack et al

    Effects of Sex, Age, and Season on Plasma Steroids in Free-ranging Texas Horned Lizards (Phrynosoma cornutum)

    Get PDF
    The Texas horned lizard (Phrynosoma cornutum) is protected in several states due to its apparently declining numbers; information on its physiology is therefore of interest from both comparative endocrine and applied perspectives. We collected blood samples from free-ranging P. cornutum in Oklahoma from April to September 2005, spanning their complete active period. We determined plasma concentrations of the steroids, progesterone (P), testosterone (T), and corticosterone (CORT) by radioimmunoassay following chromatographic separation and 17β-estradiol (E2) by direct radioimmunoassay. T concentrations in breeding males were significantly higher than in non-breeding males. P showed no significant seasonal variation within either sex. CORT was significantly higher during the egg-laying season compared to breeding and non-breeding seasons for adult females and it was marginally higher in breeding than in non-breeding males (P = 0.055). CORT concentrations also significantly increased with handling in non-breeding males and egg-laying females. Perhaps most surprisingly, there were no significant sex differences in plasma concentrations of P and E2. Furthermore, with respect to seasonal differences, plasma E2 concentrations were significantly higher in breeding females than in egg-laying or non-breeding females, and they were significantly higher in breeding than in non-breeding males. During the non-breeding season, yearling males exhibited higher E2 concentrations than adult males; no other differences between the steroid concentrations of yearlings and adults were detected. In comparison to other vertebrates, the seasonal steroid profile of P. cornutum exhibited both expected and unexpected patterns, and our results illustrate the value of collecting such baseline data as a springboard for appropriate questions for future research

    A Serpin shapes the extracellular environment to prevent influenza A virus maturation

    Get PDF
    Interferon-stimulated genes (ISGs) act in concert to provide a tight barrier against viruses. Recent studies have shed light on the contribution of individual ISG effectors to the antiviral state, but most have examined those acting on early, intracellular stages of the viral life cycle. Here, we applied an image-based screen to identify ISGs inhibiting late stages of influenza A virus (IAV) infection. We unraveled a directly antiviral function for the gene SERPINE1, encoding plasminogen activator inhibitor 1 (PAI-1). By targeting extracellular airway proteases, PAI-1 inhibits IAV glycoprotein cleavage, thereby reducing infectivity of progeny viruses. This was biologically relevant for IAV restriction in vivo. Further, partial PAI-1 deficiency, attributable to a polymorphism in human SERPINE1, conferred increased susceptibility to IAV in vitro. Together, our findings reveal that manipulating the extracellular environment to inhibit the last step in a virus life cycle is an important mechanism of the antiviral response

    Type I and III interferons disrupt lung epithelial repair during recovery from viral infection

    Get PDF
    Interferons (IFNs) are central to antiviral immunity. Viral recognition elicits IFN production, which in turn triggers the transcription of IFN-stimulated genes (ISGs), which engage in various antiviral functions. Type I IFNs (IFN-α and IFN-β) are widely expressed and can result in immunopathology during viral infections. By contrast, type III IFN (IFN-λ) responses are primarily restricted to mucosal surfaces and are thought to confer antiviral protection without driving damaging proinflammatory responses. Accordingly, IFN-λ has been proposed as a therapeutic in coronavirus disease 2019 (COVID-19) and other such viral respiratory diseases (see the Perspective by Grajales-Reyes and Colonna). Broggi et al. report that COVID-19 patient morbidity correlates with the high expression of type I and III IFNs in the lung. Furthermore, IFN-λ secreted by dendritic cells in the lungs of mice exposed to synthetic viral RNA causes damage to the lung epithelium, which increases susceptibility to lethal bacterial superinfections. Similarly, using a mouse model of influenza infection, Major et al. found that IFN signaling (especially IFN-λ) hampers lung repair by inducing p53 and inhibiting epithelial proliferation and differentiation. Complicating this picture, Hadjadj et al. observed that peripheral blood immune cells from severe and critical COVID-19 patients have diminished type I IFN and enhanced proinflammatory interleukin-6– and tumor necrosis factor-α–fueled responses. This suggests that in contrast to local production, systemic production of IFNs may be beneficial. The results of this trio of studies suggest that the location, timing, and duration of IFN exposure are critical parameters underlying the success or failure of therapeutics for viral respiratory infections

    In vitro metabolic fate of nine LSD-based new psychoactive substances and their analytical detectability in different urinary screening procedures

    Get PDF
    The market of new psychoactive substances (NPS) is characterized by a high turnover and thus provides several challenges for analytical toxicology. The analysis of urine samples often requires detailed knowledge about metabolism given that parent compounds may either be present only in small amounts or may not even be excreted. Hence, knowledge of the metabolism of NPS is a prerequisite for the development of reliable analytical methods. The main aim of this work was to elucidate for the first time the pooled human liver S9 fraction metabolism of the nine d-lysergic acid diethylamide (LSD) derivatives 1-acetyl-LSD (ALD-52), 1-propionyl-LSD (1P-LSD), 1-butyryl-LSD (1B-LSD), N6-ethyl-nor-LSD (ETH-LAD), 1-propionyl-N6-ethyl-nor-LSD (1P-ETH-LAD), N6-allyl-nor-LSD (AL-LAD), N-ethyl-N-cyclopropyl lysergamide (ECPLA), (2’S,4’S)-lysergic acid 2,4-dimethylazetidide (LSZ), and lysergic acid morpholide (LSM-775) by means of liquid chromatography coupled to high resolution tandem mass spectrometry. Identification of the monooxygenase enzymes involved in the initial metabolic steps was performed using recombinant human enzymes and their contribution confirmed by inhibition experiments. Overall, N-dealkylation, hydroxylation, as well as combinations of these steps predominantly catalyzed by CYP1A2 and CYP3A4 were found. For ALD-52, 1P-LSD, and 1B-LSD deacylation to LSD was observed. The obtained mass spectral data of all metabolites is essential for reliable analytical detection particularly in urinalysis and for differentiation of the LSD-like compounds as biotransformations also led to structurally identical metabolites. However, in urine of rats after the administration of expected recreational doses and using standard urine screening approaches, parent drugs or metabolites could not be detected

    A phase I pharmacokinetic and safety study of cabazitaxel in adult cancer patients with normal and impaired renal function

    Get PDF
    PURPOSE\textbf{PURPOSE} Limited data are available on cabazitaxel pharmacokinetics in patients with renal impairment. This open-label, multicenter study assessed cabazitaxel in patients with advanced solid tumors and normal or impaired renal function. METHODS\textbf{METHODS} Cohorts A (normal renal function: creatinine clearance [CrCL] >80 mL/min/1.73 m2^{2}), B (moderate renal impairment: CrCL 30 to <50 mL/min/1.73 m2^{2}) and C (severe impairment: CrCL <30 mL/min/1.73 m(2)) received cabazitaxel 25 mg/m2^{2} (A, B) or 20 mg/m(2) (C, could be escalated to 25 mg/m2^{2}), once every 3 weeks. Pharmacokinetic parameters and cabazitaxel unbound fraction (FU_{U}) were assessed using linear regression and mixed models. Geometric mean (GM) and GM ratios (GMRs) were determined using mean CrCL intervals (moderate and severe renal impairment: 40 and 15 mL/min/1.73 m2^{2}) versus a control (90 mL/min/1.73 m2^{2}). RESULTS\textbf{RESULTS} Overall, 25 patients received cabazitaxel (median cycles: 3 [range 1-20]; Cohort A: 5 [2-13]; Cohort B: 3 [1-15]; and Cohort C: 5 [1-20]), of which 24 were eligible for pharmacokinetic analysis (eight in each cohort). For moderate and severe renal impairment versus normal renal function, GMR estimates were: clearance normalized to body surface area (CL/BSA) 0.95 (90% CI 0.80-1.13) and 0.89 (0.61-1.32); area under the curve normalized to dose (AUC/dose) 1.06 (0.88-1.27) and 1.14 (0.76-1.71); and F U 0.99 (0.94-1.04) and 0.97 (0.87-1.09), respectively. Estimated slopes of linear regression of log parameters versus log CrCL (renal impairment) were: CL/BSA 0.06 (-0.15 to 0.28); AUC/dose -0.07 (-0.30 to 0.16); and F U 0.02 (-0.05 to 0.08). Cabazitaxel safety profile was consistent with previous reports. CONCLUSIONS\textbf{CONCLUSIONS} Renal impairment had no clinically meaningful effect on cabazitaxel pharmacokinetics.This study was supported by Sanofi. Javier Garcia-Corbacho acknowledges clinical fellowship support from SEOM. Experimental Cancer Medicine Centre (ECMC) and NIHR Biomedical Research Centre (BRC) funding is also acknowledged for the Cambridge Cancer Centre

    A TLR7 antagonist restricts interferon-dependent and -independent immunopathology in a mouse model of severe influenza

    Get PDF
    Cytokine-mediated immune-cell recruitment and inflammation contribute to protection in respiratory virus infection. However, uncontrolled inflammation and the “cytokine storm” are hallmarks of immunopathology in severe infection. Cytokine storm is a broad term for a phenomenon with diverse characteristics and drivers, depending on host genetics, age, and other factors. Taking advantage of the differential use of virus-sensing systems by different cell types, we test the hypothesis that specifically blocking TLR7-dependent, immune cell–produced cytokines reduces influenza-related immunopathology. In a mouse model of severe influenza characterized by a type I interferon (IFN-I)–driven cytokine storm, TLR7 antagonist treatment leaves epithelial antiviral responses unaltered but acts through pDCs and monocytes to reduce IFN-I and other cytokines in the lung, thus ameliorating inflammation and severity. Moreover, even in the absence of IFN-I signaling, TLR7 antagonism reduces inflammation and mortality driven by monocyte-produced chemoattractants and neutrophil recruitment into the infected lung. Hence, TLR7 antagonism reduces diverse types of cytokine storm in severe influenza

    Type I interferons drive MAIT cell functions against bacterial pneumonia

    Get PDF
    Mucosal-associated invariant T (MAIT) cells are abundant in the lung and contribute to host defense against infections. During bacterial infections, MAIT cell activation has been proposed to require T cell receptor (TCR)–mediated recognition of antigens derived from the riboflavin synthesis pathway presented by the antigen-presenting molecule MR1. MAIT cells can also be activated by cytokines in an MR1-independent manner, yet the contribution of MR1-dependent vs. -independent signals to MAIT cell functions in vivo remains unclear. Here, we use Klebsiella pneumoniae as a model of bacterial pneumonia and demonstrate that MAIT cell activation is independent of MR1 and primarily driven by type I interferons (IFNs). During Klebsiella infection, type I IFNs stimulate activation of murine and human MAIT cells, induce a Th1/cytotoxic transcriptional program, and modulate MAIT cell location within the lungs. Consequently, adoptive transfer or boosting of pulmonary MAIT cells protect mice from Klebsiella infection, with protection being dependent on direct type I IFN signaling on MAIT cells. These findings reveal type I IFNs as new molecular targets to manipulate MAIT cell functions during bacterial infections

    COVID-19 and emerging viral infections: The case for interferon lambda

    Get PDF
    With the first reports on coronavirus disease 2019 (COVID-19), which is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the scientific community working in the field of type III IFNs (IFN-λ) realized that this class of IFNs could play an important role in this and other emerging viral infections. In this Viewpoint, we present our opinion on the benefits and potential limitations of using IFN-λ to prevent, limit, and treat these dangerous viral infections
    corecore