444 research outputs found
On Optimal Detection of Point Sources in CMB Maps
Point-source contamination in high-precision Cosmic Microwave Background
(CMB) maps severely affects the precision of cosmological parameter estimates.
Among the methods that have been proposed for source detection, wavelet
techniques based on ``optimal'' filters have been proposed.In this paper we
show that these filters are in fact only restrictive cases of a more general
class of matched filters that optimize signal-to-noise ratio and that have, in
general, better source detection capabilities, especially for lower amplitude
sources. These conclusions are confirmed by some numerical experiments.
\keywords{Methods: data analysis -- Methods: statisticalComment: 6 pages, 3 figure
Statistical properties of dust far-infrared emission
The description of the statistical properties of dust emission gives
important constraints on the physics of the interstellar medium but it is also
a useful way to estimate the contamination of diffuse interstellar emission in
the cases where it is considered a nuisance. The main goals of this analysis of
the power spectrum and non-Gaussian properties of 100 micron dust emission are
1) to estimate the power spectrum of interstellar matter density in three
dimensions, 2) to review and extend previous estimates of the cirrus noise due
to dust emission and 3) to produce simulated dust emission maps that reproduce
the observed statistical properties. The main results are the following. 1) The
cirrus noise level as a function of brightness has been previously
overestimated. It is found to be proportional to instead of ^1.5, where
is the local average brightness at 100 micron. This scaling is in
accordance with the fact that the brightness fluctuation level observed at a
given angular scale on the sky is the sum of fluctuations of increasing
amplitude with distance on the line of sight. 2) The spectral index of dust
emission at scales between 5 arcmin and 12.5 degrees is =-2.9 on average
but shows significant variations over the sky. Bright regions have
systematically steeper power spectra than diffuse regions. 3) The skewness and
kurtosis of brightness fluctuations is high, indicative of strong
non-Gaussianity. 4) Based on our characterization of the 100 micron power
spectrum we provide a prescription of the cirrus confusion noise as a function
of wavelength and scale. 5) Finally we present a method based on a modification
of Gaussian random fields to produce simulations of dust maps which reproduce
the power spectrum and non-Gaussian properties of interstellar dust emission.Comment: 13 pages, 13 figures. Accepted for publication in A&
Digital Deblurring of CMB Maps II: Asymmetric Point Spread Function
In this second paper in a series dedicated to developing efficient numerical
techniques for the deblurring Cosmic Microwave Background (CMB) maps, we
consider the case of asymmetric point spread functions (PSF). Although
conceptually this problem is not different from the symmetric case, there are
important differences from the computational point of view because it is no
longer possible to use some of the efficient numerical techniques that work
with symmetric PSFs. We present procedures that permit the use of efficient
techniques even when this condition is not met. In particular, two methods are
considered: a procedure based on a Kronecker approximation technique that can
be implemented with the numerical methods used with symmetric PSFs but that has
the limitation of requiring only mildly asymmetric PSFs. The second is a
variant of the classic Tikhonov technique that works even with very asymmetric
PSFs but that requires discarding the edges of the maps. We provide details for
efficient implementations of the algorithms. Their performance is tested on
simulated CMB maps.Comment: 9 pages, 13 Figure
QPOs: Einstein's gravity non-linear resonances
There is strong evidence that the observed kHz Quasi Periodic Oscillations
(QPOs) in the X-ray flux of neutron star and black hole sources in LMXRBs are
linked to Einstein's General Relativity. Abramowicz&Klu\'zniak (2001) suggested
a non-linear resonance model to explain the QPOs origin: here we summarize
their idea and the development of a mathematical toy-model which begins to
throw light on the nature of Einstein's gravity non-linear oscillations.Comment: Proceeding of the Einstein's Legacy, Munich 200
Filter design for the detection of compact sources based on the Neyman-Pearson detector
This paper considers the problem of compact source detection on a Gaussian
background in 1D. Two aspects of this problem are considered: the design of the
detector and the filtering of the data. Our detection scheme is based on local
maxima and it takes into account not only the amplitude but also the curvature
of the maxima. A Neyman-Pearson test is used to define the region of
acceptance, that is given by a sufficient linear detector that is independent
on the amplitude distribution of the sources. We study how detection can be
enhanced by means of linear filters with a scaling parameter and compare some
of them (the Mexican Hat wavelet, the matched and the scale-adaptive filters).
We introduce a new filter, that depends on two free parameters (biparametric
scale-adaptive filter). The value of these two parameters can be determined,
given the a priori pdf of the amplitudes of the sources, such that the filter
optimizes the performance of the detector in the sense that it gives the
maximum number of real detections once fixed the number density of spurious
sources. The combination of a detection scheme that includes information on the
curvature and a flexible filter that incorporates two free parameters (one of
them a scaling) improves significantly the number of detections in some
interesting cases. In particular, for the case of weak sources embedded in
white noise the improvement with respect to the standard matched filter is of
the order of 40%. Finally, an estimation of the amplitude of the source is
introduced and it is proven that such an estimator is unbiased and it has
maximum efficiency. We perform numerical simulations to test these theoretical
ideas and conclude that the results of the simulations agree with the
analytical ones.Comment: 15 pages, 13 figures, version accepted for publication in MNRAS.
Corrected typos in Tab.
The Dependence of Galaxy Shape on Luminosity and Surface Brightness Profile
For a sample of 96,951 galaxies from the Sloan Digital Sky Survey Data
Release 3, we study the distribution of apparent axis ratios as a function of
r-band absolute magnitude and surface brightness profile type. We use the
parameter fracDeV to quantify the profile type (fracDeV = 1 for a de
Vaucouleurs profile; fracDeV = 0 for an exponential profile). When the apparent
axis ratio q_{am} is estimated from the moments of the light distribution, the
roundest galaxies are very bright (M_r \sim -23) de Vaucouleurs galaxies and
the flattest are modestly bright (M_r \sim -18) exponential galaxies. When the
apparent axis ratio q_{25} is estimated from the axis ratio of the 25
mag/arcsec^2 isophote, we find that de Vaucouleurs galaxies are flatter than
exponential galaxies of the same absolute magnitude. For a given surface
brightness profile type, very bright galaxies are rounder, on average, than
fainter galaxies. We deconvolve the distributions of apparent axis ratios to
find the distribution of the intrinsic short-to-long axis ratio gamma, assuming
constant triaxiality T. For all profile types and luminosities, the
distribution of apparent axis ratios is inconsistent with a population of
oblate spheroids, but is usually consistent with a population of prolate
spheroids. Bright galaxies with a de Vaucouleurs profile (M_r < -21.84, fracDeV
> 0.9) have a distribution of q_{am} that is consistent with triaxiality in the
range 0.4 < T < 0.8, with mean intrinsic axis ratio 0.66 < gamma < 0.69. The
fainter de Vaucouleurs galaxies are best fit with prolate spheroids (T = 1)
with mean axis ratio gamma = 0.51.Comment: 32 pages, 12 figures, to appear in Ap
A Cross-Validation Approach to Approximate Basis Function Selection of the Stall Flutter Response of a Rectangular Wing in a Wind Tunnel
The stall flutter response of a rectangular wing in a low speed wind tunnel is modelled using a nonlinear difference equation description. Static and dynamic tests are used to select a suitable model structure and basis function. Bifurcation criteria such as the Hopf condition and vibration amplitude variation with airspeed were used to ensure the model was representative of experimentally measured stall flutter phenomena. Dynamic test data were used to estimate model parameters and estimate an approximate basis function
Velocity Field Statistics in Star-Forming Regions. I. Centroid Velocity Observations
The probability density functions (pdfs) of molecular line centroid velocity
fluctuations and fluctuation differences at different spatial lags are
estimated for several nearby molecular clouds with active internal star
formation. The data consist of over 75,000 CO line profiles divided
among twelve spatially and/or kinematically distinct regions. Although three
regions (all in Mon R2) appear nearly Gaussian, the others show strong evidence
for non-Gaussian, often nearly exponential, centroid velocity pdfs, possibly
with power law contributions in the far tails. Evidence for nearly exponential
centroid pdfs in the neutral HI component of the ISM is also presented, based
on older optical and radio observations. These results are in contrast to pdfs
found in isotropic incompressible turbulence experiments and simulations.
Furthermore, no evidence is found for the scaling of difference pdf kurtosis
with Reynolds number which is seen in incompressible turbulence, and the
spatial distribution of high-amplitude velocity differences shows little
indication of the filamentary appearance predicted by decay simulations
dominated by vortical interactions. The variation with lag of the difference
pdf moments is presented as a constraint on future simulations.Comment: LaTeX, 23 pages, with 15 Figures included separately as gif image
files. Refereed/revised version accepted to the Astrophysical Journal. A
complete (but much larger) postscript version is available from
http://ktaadn.gsfc.nasa.gov/~miesc
One-Point Probability Distribution Functions of Supersonic Turbulent Flows in Self-Gravitating Media
Turbulence is essential for understanding the structure and dynamics of
molecular clouds and star-forming regions. There is a need for adequate tools
to describe and characterize the properties of turbulent flows. One-point
probability distribution functions (pdf's) of dynamical variables have been
suggested as appropriate statistical measures and applied to several observed
molecular clouds. However, the interpretation of these data requires comparison
with numerical simulations. To address this issue, SPH simulations of driven
and decaying, supersonic, turbulent flows with and without self-gravity are
presented. In addition, random Gaussian velocity fields are analyzed to
estimate the influence of variance effects. To characterize the flow
properties, the pdf's of the density, of the line-of-sight velocity centroids,
and of the line centroid increments are studied. This is supplemented by a
discussion of the dispersion and the kurtosis of the increment pdf's, as well
as the spatial distribution of velocity increments for small spatial lags. From
the comparison between different models of interstellar turbulence, it follows
that the inclusion of self-gravity leads to better agreement with the observed
pdf's in molecular clouds. The increment pdf's for small spatial lags become
exponential for all considered velocities. However, all the processes
considered here lead to non-Gaussian signatures, differences are only gradual,
and the analyzed pdf's are in addition projection dependent. It appears
therefore very difficult to distinguish between different physical processes on
the basis of pdf's only, which limits their applicability for adequately
characterizing interstellar turbulence.Comment: 38 pages (incl. 17 figures), accepted for publication in ApJ, also
available with full resolution figures at
http://www.strw.leidenuniv.nl/~klessen/Preprint
- …
