444 research outputs found

    On Optimal Detection of Point Sources in CMB Maps

    Full text link
    Point-source contamination in high-precision Cosmic Microwave Background (CMB) maps severely affects the precision of cosmological parameter estimates. Among the methods that have been proposed for source detection, wavelet techniques based on ``optimal'' filters have been proposed.In this paper we show that these filters are in fact only restrictive cases of a more general class of matched filters that optimize signal-to-noise ratio and that have, in general, better source detection capabilities, especially for lower amplitude sources. These conclusions are confirmed by some numerical experiments. \keywords{Methods: data analysis -- Methods: statisticalComment: 6 pages, 3 figure

    Statistical properties of dust far-infrared emission

    Full text link
    The description of the statistical properties of dust emission gives important constraints on the physics of the interstellar medium but it is also a useful way to estimate the contamination of diffuse interstellar emission in the cases where it is considered a nuisance. The main goals of this analysis of the power spectrum and non-Gaussian properties of 100 micron dust emission are 1) to estimate the power spectrum of interstellar matter density in three dimensions, 2) to review and extend previous estimates of the cirrus noise due to dust emission and 3) to produce simulated dust emission maps that reproduce the observed statistical properties. The main results are the following. 1) The cirrus noise level as a function of brightness has been previously overestimated. It is found to be proportional to instead of ^1.5, where is the local average brightness at 100 micron. This scaling is in accordance with the fact that the brightness fluctuation level observed at a given angular scale on the sky is the sum of fluctuations of increasing amplitude with distance on the line of sight. 2) The spectral index of dust emission at scales between 5 arcmin and 12.5 degrees is =-2.9 on average but shows significant variations over the sky. Bright regions have systematically steeper power spectra than diffuse regions. 3) The skewness and kurtosis of brightness fluctuations is high, indicative of strong non-Gaussianity. 4) Based on our characterization of the 100 micron power spectrum we provide a prescription of the cirrus confusion noise as a function of wavelength and scale. 5) Finally we present a method based on a modification of Gaussian random fields to produce simulations of dust maps which reproduce the power spectrum and non-Gaussian properties of interstellar dust emission.Comment: 13 pages, 13 figures. Accepted for publication in A&

    Digital Deblurring of CMB Maps II: Asymmetric Point Spread Function

    Full text link
    In this second paper in a series dedicated to developing efficient numerical techniques for the deblurring Cosmic Microwave Background (CMB) maps, we consider the case of asymmetric point spread functions (PSF). Although conceptually this problem is not different from the symmetric case, there are important differences from the computational point of view because it is no longer possible to use some of the efficient numerical techniques that work with symmetric PSFs. We present procedures that permit the use of efficient techniques even when this condition is not met. In particular, two methods are considered: a procedure based on a Kronecker approximation technique that can be implemented with the numerical methods used with symmetric PSFs but that has the limitation of requiring only mildly asymmetric PSFs. The second is a variant of the classic Tikhonov technique that works even with very asymmetric PSFs but that requires discarding the edges of the maps. We provide details for efficient implementations of the algorithms. Their performance is tested on simulated CMB maps.Comment: 9 pages, 13 Figure

    QPOs: Einstein's gravity non-linear resonances

    Full text link
    There is strong evidence that the observed kHz Quasi Periodic Oscillations (QPOs) in the X-ray flux of neutron star and black hole sources in LMXRBs are linked to Einstein's General Relativity. Abramowicz&Klu\'zniak (2001) suggested a non-linear resonance model to explain the QPOs origin: here we summarize their idea and the development of a mathematical toy-model which begins to throw light on the nature of Einstein's gravity non-linear oscillations.Comment: Proceeding of the Einstein's Legacy, Munich 200

    Filter design for the detection of compact sources based on the Neyman-Pearson detector

    Full text link
    This paper considers the problem of compact source detection on a Gaussian background in 1D. Two aspects of this problem are considered: the design of the detector and the filtering of the data. Our detection scheme is based on local maxima and it takes into account not only the amplitude but also the curvature of the maxima. A Neyman-Pearson test is used to define the region of acceptance, that is given by a sufficient linear detector that is independent on the amplitude distribution of the sources. We study how detection can be enhanced by means of linear filters with a scaling parameter and compare some of them (the Mexican Hat wavelet, the matched and the scale-adaptive filters). We introduce a new filter, that depends on two free parameters (biparametric scale-adaptive filter). The value of these two parameters can be determined, given the a priori pdf of the amplitudes of the sources, such that the filter optimizes the performance of the detector in the sense that it gives the maximum number of real detections once fixed the number density of spurious sources. The combination of a detection scheme that includes information on the curvature and a flexible filter that incorporates two free parameters (one of them a scaling) improves significantly the number of detections in some interesting cases. In particular, for the case of weak sources embedded in white noise the improvement with respect to the standard matched filter is of the order of 40%. Finally, an estimation of the amplitude of the source is introduced and it is proven that such an estimator is unbiased and it has maximum efficiency. We perform numerical simulations to test these theoretical ideas and conclude that the results of the simulations agree with the analytical ones.Comment: 15 pages, 13 figures, version accepted for publication in MNRAS. Corrected typos in Tab.

    The Dependence of Galaxy Shape on Luminosity and Surface Brightness Profile

    Get PDF
    For a sample of 96,951 galaxies from the Sloan Digital Sky Survey Data Release 3, we study the distribution of apparent axis ratios as a function of r-band absolute magnitude and surface brightness profile type. We use the parameter fracDeV to quantify the profile type (fracDeV = 1 for a de Vaucouleurs profile; fracDeV = 0 for an exponential profile). When the apparent axis ratio q_{am} is estimated from the moments of the light distribution, the roundest galaxies are very bright (M_r \sim -23) de Vaucouleurs galaxies and the flattest are modestly bright (M_r \sim -18) exponential galaxies. When the apparent axis ratio q_{25} is estimated from the axis ratio of the 25 mag/arcsec^2 isophote, we find that de Vaucouleurs galaxies are flatter than exponential galaxies of the same absolute magnitude. For a given surface brightness profile type, very bright galaxies are rounder, on average, than fainter galaxies. We deconvolve the distributions of apparent axis ratios to find the distribution of the intrinsic short-to-long axis ratio gamma, assuming constant triaxiality T. For all profile types and luminosities, the distribution of apparent axis ratios is inconsistent with a population of oblate spheroids, but is usually consistent with a population of prolate spheroids. Bright galaxies with a de Vaucouleurs profile (M_r < -21.84, fracDeV > 0.9) have a distribution of q_{am} that is consistent with triaxiality in the range 0.4 < T < 0.8, with mean intrinsic axis ratio 0.66 < gamma < 0.69. The fainter de Vaucouleurs galaxies are best fit with prolate spheroids (T = 1) with mean axis ratio gamma = 0.51.Comment: 32 pages, 12 figures, to appear in Ap

    A Cross-Validation Approach to Approximate Basis Function Selection of the Stall Flutter Response of a Rectangular Wing in a Wind Tunnel

    Get PDF
    The stall flutter response of a rectangular wing in a low speed wind tunnel is modelled using a nonlinear difference equation description. Static and dynamic tests are used to select a suitable model structure and basis function. Bifurcation criteria such as the Hopf condition and vibration amplitude variation with airspeed were used to ensure the model was representative of experimentally measured stall flutter phenomena. Dynamic test data were used to estimate model parameters and estimate an approximate basis function

    Velocity Field Statistics in Star-Forming Regions. I. Centroid Velocity Observations

    Full text link
    The probability density functions (pdfs) of molecular line centroid velocity fluctuations and fluctuation differences at different spatial lags are estimated for several nearby molecular clouds with active internal star formation. The data consist of over 75,000 13^{13}CO line profiles divided among twelve spatially and/or kinematically distinct regions. Although three regions (all in Mon R2) appear nearly Gaussian, the others show strong evidence for non-Gaussian, often nearly exponential, centroid velocity pdfs, possibly with power law contributions in the far tails. Evidence for nearly exponential centroid pdfs in the neutral HI component of the ISM is also presented, based on older optical and radio observations. These results are in contrast to pdfs found in isotropic incompressible turbulence experiments and simulations. Furthermore, no evidence is found for the scaling of difference pdf kurtosis with Reynolds number which is seen in incompressible turbulence, and the spatial distribution of high-amplitude velocity differences shows little indication of the filamentary appearance predicted by decay simulations dominated by vortical interactions. The variation with lag of the difference pdf moments is presented as a constraint on future simulations.Comment: LaTeX, 23 pages, with 15 Figures included separately as gif image files. Refereed/revised version accepted to the Astrophysical Journal. A complete (but much larger) postscript version is available from http://ktaadn.gsfc.nasa.gov/~miesc

    One-Point Probability Distribution Functions of Supersonic Turbulent Flows in Self-Gravitating Media

    Full text link
    Turbulence is essential for understanding the structure and dynamics of molecular clouds and star-forming regions. There is a need for adequate tools to describe and characterize the properties of turbulent flows. One-point probability distribution functions (pdf's) of dynamical variables have been suggested as appropriate statistical measures and applied to several observed molecular clouds. However, the interpretation of these data requires comparison with numerical simulations. To address this issue, SPH simulations of driven and decaying, supersonic, turbulent flows with and without self-gravity are presented. In addition, random Gaussian velocity fields are analyzed to estimate the influence of variance effects. To characterize the flow properties, the pdf's of the density, of the line-of-sight velocity centroids, and of the line centroid increments are studied. This is supplemented by a discussion of the dispersion and the kurtosis of the increment pdf's, as well as the spatial distribution of velocity increments for small spatial lags. From the comparison between different models of interstellar turbulence, it follows that the inclusion of self-gravity leads to better agreement with the observed pdf's in molecular clouds. The increment pdf's for small spatial lags become exponential for all considered velocities. However, all the processes considered here lead to non-Gaussian signatures, differences are only gradual, and the analyzed pdf's are in addition projection dependent. It appears therefore very difficult to distinguish between different physical processes on the basis of pdf's only, which limits their applicability for adequately characterizing interstellar turbulence.Comment: 38 pages (incl. 17 figures), accepted for publication in ApJ, also available with full resolution figures at http://www.strw.leidenuniv.nl/~klessen/Preprint
    corecore