1,750 research outputs found

    Bose-Glass behaviour in Bi_{2}Sr_{2}Ca_{1-x}Y_{x}Cu_{2}O_{8} crystals with columnar defects: experimental evidence for variable-range hopping

    Full text link
    We report on vortex transport in Bi_{2}Sr_{2}Ca_{1-x}Y_{x}Cu_{2}O_{8} crystals irradiated at different doses of heavy ions. We show evidence of a flux-creep resistivity typical of a variable-range vortex hopping mechanism as predicted by Nelson and Vinokur.Comment: 5 pages LaTeX2e (uses elsart.cls), 1 Encapsulated PostScript figur

    Model-based engineering of widgets, user applications and servers compliant with ARINC 661 specification

    Get PDF
    International audienceThe purpose of ARINC 661 specification [1] is to define interfaces to a Cockpit Display System (CDS) used in any types of aircraft installations. ARINC 661 provides precise information for communication protocol between application (called User Applications) and user interface components (called widgets) as well as precise information about the widgets themselves. However, in ARINC 661, no information is given about the behaviour of these widgets and about the behaviour of an application made up of a set of such widgets. This paper presents the results of the application of a formal description technique to the various elements of ARINC 661 specification within an industrial project. This formal description technique called Interactive Cooperative Objects defines in a precise and non-ambiguous way all the elements of ARINC 661 specification. The application of the formal description techniques is shown on an interactive application called MPIA (Multi Purpose Interactive Application). Within this application, we present how ICO are used for describing interactive widgets, User Applications and User Interface servers (in charge of interaction techniques). The emphasis is put on the model-based management of the feel of the applications allowing rapid prototyping of the external presentation and the interaction techniques. Lastly, we present the CASE (Computer Aided Software Engineering) tool supporting the formal description technique and its new extensions in order to deal with large scale applications as the ones targeted at by ARINC 661 specification

    Duplications of the critical Rubinstein-Taybi deletion region on chromosome 16p13.3 cause a novel recognisable syndrome

    Get PDF
    Background The introduction of molecular karyotyping technologies facilitated the identification of specific genetic disorders associated with imbalances of certain genomic regions. A detailed phenotypic delineation of interstitial 16p13.3 duplications is hampered by the scarcity of such patients. Objectives To delineate the phenotypic spectrum associated with interstitial 16p13.3 duplications, and perform a genotype-phenotype analysis. Results The present report describes the genotypic and phenotypic delineation of nine submicroscopic interstitial 16p13.3 duplications. The critically duplicated region encompasses a single gene, CREBBP, which is mutated or deleted in Rubinstein-Taybi syndrome. In 10 out of the 12 hitherto described probands, the duplication arose de novo. Conclusions Interstitial 16p13.3 duplications have a recognizable phenotype, characterized by normal to moderately retarded mental development, normal growth, mild arthrogryposis, frequently small and proximally implanted thumbs and characteristic facial features. Occasionally, developmental defects of the heart, genitalia, palate or the eyes are observed. The frequent de novo occurrence of 16p13.3 duplications demonstrates the reduced reproductive fitness associated with this genotype. Inheritance of the duplication from a clinically normal parent in two cases indicates that the associated phenotype is incompletely penetrant

    ORB5: a global electromagnetic gyrokinetic code using the PIC approach in toroidal geometry

    Get PDF
    This paper presents the current state of the global gyrokinetic code ORB5 as an update of the previous reference [Jolliet et al., Comp. Phys. Commun. 177 409 (2007)]. The ORB5 code solves the electromagnetic Vlasov-Maxwell system of equations using a PIC scheme and also includes collisions and strong flows. The code assumes multiple gyrokinetic ion species at all wavelengths for the polarization density and drift-kinetic electrons. Variants of the physical model can be selected for electrons such as assuming an adiabatic response or a ``hybrid'' model in which passing electrons are assumed adiabatic and trapped electrons are drift-kinetic. A Fourier filter as well as various control variates and noise reduction techniques enable simulations with good signal-to-noise ratios at a limited numerical cost. They are completed with different momentum and zonal flow-conserving heat sources allowing for temperature-gradient and flux-driven simulations. The code, which runs on both CPUs and GPUs, is well benchmarked against other similar codes and analytical predictions, and shows good scalability up to thousands of nodes

    The in-plane electrodynamics of the superconductivity in Bi2Sr2CaCu2O8+d: energy scales and spectral weight distribution

    Full text link
    The in-plane infrared and visible (3 meV-3 eV) reflectivity of Bi2Sr2CaCu2O8+d (Bi-2212) thin films is measured between 300 K and 10 K for different doping levels with unprecedented accuracy. The optical conductivity is derived through an accurate fitting procedure. We study the transfer of spectral weight from finite energy into the superfluid as the system becomes superconducting. In the over-doped regime, the superfluid develops at the expense of states lying below 60 meV, a conventional energy of the order of a few times the superconducting gap. In the underdoped regime, spectral weight is removed from up to 2 eV, far beyond any conventional scale. The intraband spectral weight change between the normal and superconducting state, if analyzed in terms of a change of kinetic energy is ~1 meV. Compared to the condensation energy, this figure addresses the issue of a kinetic energy driven mechanism.Comment: 13 pages with 9 figures include

    Anomalous peak in the superconducting condensate density of cuprate high T_{c} superconductors at a unique critical doping state

    Full text link
    The doping dependence of the superconducting condensate density, n_{s}^{o}, has been studied by muon-spin-rotation for Y_{0.8}Ca_{0.2}Ba_{2}(Cu_{1-z}Zn_{z})_{3}O_{7-\delta} and Tl_{0.5-y}Pb_{0.5+y}Sr_{2}Ca_{1-x}Y_{x}Cu_{2}O_{7}. We find that n_{s}^{o} exhibits a pronounced peak at a unique doping state in the slightly overdoped regime. Its position coincides with the critical doping state where the normal state pseudogap first appears depleting the electronic density of states. A surprising correlation between n_{s}^{o} and the condensation energy U_{o} is observed which suggests unconventional behavior even in the overdoped region.Comment: 10 pages, 3 figure
    corecore