55 research outputs found

    Inverse velocity statistics in two dimensional turbulence

    Full text link
    We present a numerical study of two-dimensional turbulent flows in the enstrophy cascade regime, with different large-scale forcings and energy sinks. In particular, we study the statistics of more-than-differentiable velocity fluctuations by means of two recently introduced sets of statistical estimators, namely {\it inverse statistics} and {\it second order differences}. We show that the 2D turbulent velocity field, u\bm u, cannot be simply characterized by its spectrum behavior, E(k)kαE(k) \propto k^{-\alpha}. There exists a whole set of exponents associated to the non-trivial smooth fluctuations of the velocity field at all scales. We also present a numerical investigation of the temporal properties of u\bm u measured in different spatial locations.Comment: 9 pages, 12 figure

    Exit-Times and {\Large ϵ\epsilon}-Entropy for Dynamical Systems, Stochastic Processes, and Turbulence

    Full text link
    We present a comprehensive investigation of ϵ\epsilon-entropy, h(ϵ)h(\epsilon), in dynamical systems, stochastic processes and turbulence. Particular emphasis is devoted on a recently proposed approach to the calculation of the ϵ\epsilon-entropy based on the exit-time statistics. The advantages of this method are demonstrated in examples of deterministic diffusive maps, intermittent maps, stochastic self-affine and multi-affine signals and experimental turbulent data. Concerning turbulence, the multifractal formalism applied to the exit time statistics allows us to predict that h(ϵ)ϵ3h(\epsilon)\sim \epsilon^{-3} for velocity time measurement. This power law is independent of the presence of intermittency and has been confirmed by the experimental data analysis. Moreover, we show that the ϵ\epsilon-entropy density of a 3-dimensional velocity field is affected by the correlations induced by the sweeping of large scales.Comment: 29 LateX (RevTeX) Pgs. with 11 Figures include

    The Skeletal Organic Matrix from Mediterranean Coral Balanophyllia europaea Influences Calcium Carbonate Precipitation

    Get PDF
    Scleractinian coral skeletons are made mainly of calcium carbonate in the form of aragonite. The mineral deposition occurs in a biological confined environment, but it is still a theme of discussion to what extent the calcification occurs under biological or environmental control. Hence, the shape, size and organization of skeletal crystals from the cellular level through the colony architecture, were attributed to factors as diverse as mineral supersaturation levels and organic mediation of crystal growth. The skeleton contains an intra-skeletal organic matrix (OM) of which only the water soluble component was chemically and physically characterized. In this work that OM from the skeleton of the Balanophyllia europaea, a solitary scleractinian coral endemic to the Mediterranean Sea, is studied in vitro with the aim of understanding its role in the mineralization of calcium carbonate. Mineralization of calcium carbonate was conducted by overgrowth experiments on coral skeleton and in calcium chloride solutions containing different ratios of water soluble and/or insoluble OM and of magnesium ions. The precipitates were characterized by diffractometric, spectroscopic and microscopic techniques. The results showed that both soluble and insoluble OM components influence calcium carbonate precipitation and that the effect is enhanced by their co-presence. The role of magnesium ions is also affected by the presence of the OM components. Thus, in vitro, OM influences calcium carbonate crystal morphology, aggregation and polymorphism as a function of its composition and of the content of magnesium ions in the precipitation media. This research, although does not resolve the controversy between environmental or biological control on the deposition of calcium carbonate in corals, sheds a light on the role of OM, which appears mediated by the presence of magnesium ions

    A Model of Ischemia-Induced Neuroblast Activation in the Adult Subventricular Zone

    Get PDF
    We have developed a rat brain organotypic culture model, in which tissue slices contain cortex-subventricular zone-striatum regions, to model neuroblast activity in response to in vitro ischemia. Neuroblast activation has been described in terms of two main parameters, proliferation and migration from the subventricular zone into the injured cortex. We observed distinct phases of neuroblast activation as is known to occur after in vivo ischemia. Thus, immediately after oxygen/glucose deprivation (6–24 hours), neuroblasts reduce their proliferative and migratory activity, whereas, at longer time points after the insult (2 to 5 days), they start to proliferate and migrate into the damaged cortex. Antagonism of ionotropic receptors for extracellular ATP during and after the insult unmasks an early activation of neuroblasts in the subventricular zone, which responded with a rapid and intense migration of neuroblasts into the damaged cortex (within 24 hours). The process is further enhanced by elevating the production of the chemoattractant SDf-1α and may also be boosted by blocking the activation of microglia. This organotypic model which we have developed is an excellent in vitro system to study neurogenesis after ischemia and other neurodegenerative diseases. Its application has revealed a SOS response to oxygen/glucose deprivation, which is inhibited by unfavorable conditions due to the ischemic environment. Finally, experimental quantifications have allowed us to elaborate a mathematical model to describe neuroblast activation and to develop a computer simulation which should have promising applications for the screening of drug candidates for novel therapies of ischemia-related pathologies

    Practical thresholds to distinguish erosive and rill rainfall events

    No full text
    In this paper, 1017 rainfall events from 2008 to 2017 are used to identify the rainfall threshold that produces upland erosion at the Masse (central Italy) and Sparacia (southern Italy) experimental stations. The rainfall events are classified into three classes: non-erosive, interrill-only and rill. The threshold values for separating as correctly as possible the erosive rains (case I) and the rill rains (case II) are derived solely from the hyetograph. Each threshold value is obtained by imposing that the long-term erosivity of the events above the threshold is equal to the long-term erosivity of all erosive events (case I) or only rill events (case II). The performances of selective criteria based on 31 threshold variables are compared, and those most effective in separating erosive and rill events are identified. The identification of the best criterion depends on the aim of the analysis. It could be required to provide the greatest accuracy for separating erosive and rill events or the lowest error in the prediction of long-term erosivity. In general, the results clearly show that the best variables are those that quantify the characteristics of rainfall patterns, such as rain showers (periods of continuous rain) and the deviations in the rain records over a truncation level. These results are especially significant for the operational estimation of rainfall erosivity and for identifying the trigger of the erosion process and rill development by using only a hyetograph. This is obtained by relatively simple field measurements and is also widely available on a global scale. The most effective variables are potentially usable in water erosion prediction models as proxies of variables that are more rarely available and/or more difficult to measure
    corecore