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Abstract We consider a new model for biological invasions
in periodic patchy environments, in which long-range taxis
and population pressure are incorporated in the framework
of reaction-diffusion-advection equations. We assume that
long-range taxis is induced by a weighted integral of stimuli
within a certain sensing range. Population pressure is incor-
porated in the diffusion coefficient that linearly increases
with population density. We first analyze the model in
the absence of population pressure and demonstrate how
the sensing length of long-range taxis influences the range
expansion pattern of invasive species and its rate of spread.
The effects of population pressure are examined for both
homogeneous and periodic patchy environments. For the
homogeneous environment, an exact and explicit travel-
ing wave solution and the spreading speed are obtained.
For the periodic patchy environment, we find numerically
that a population starting from any localized distribution
evolves to a traveling periodic wave if the null solution of
the RDA equation is locally unstable, and that the traveling
wave speed significantly increases with increasing popu-
lation pressure. Furthermore, the population pressure and
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taxis intensity synergistically enhance the spreading speed
when they are increased together.
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Introduction

The environments of living organisms are often frag-
mented by natural or artificial destruction of habitats.
Invading organisms also expand their range in hetero-
geneous/fragmented landscapes. Whereas most theoretical
studies on biological invasion have assumed that environ-
ments are homogeneous (Skellam 1951; for review, see
Shigesada and Kawasaki 1997; Okubo and Levin 2001;
Lewis et al. 2016), recent theoretical developments have
increasingly been directed toward more realistic situations
involving environmental heterogeneity, temporal variability,
or interactions with other species (Chesson 2000; Hastings
et al. 2005). Specifically, in the case of environments that
change periodically in space, the spatio-temporal process of
biological invasion has been investigated intensively in the
framework of a reaction-diffusion equation (RDE model) or
integro-difference equation (IDE model) to provide various
new insights into the range expansion pattern and its spread-
ing speed (RDE model: Shigesada et al. 1986; Weinberger
2002; Kinezaki et al. 2003, 2010; Berestycki et al. 2005a, b;
Roques and Stoica 2007; IDE model: Kawasaki and Shige-
sada 2007; Lutscher 2008; Weinberger et al. 2008; Dewhirst
and Lutscher 2009; Samia and Lutscher 2010; Gilbert et al.
2014; Musgrave and Lutscher 2014; Musgrave et al. 2015;
Bengfort et al. 2016). More recently, increasing attention
has been focused on the effects of directed movement
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toward more favorable habitats (taxis) on biological inva-
sion (Mistro et al. 2005; Lutscher et al. 2006; Cantrell et al.
2006; Kawasaki et al. 2012; Vergni et al. 2012; Maciel and
Lutscher 2013, 2015; Li et al. 2015; Shigesada et al. 2015).

Many organisms, from bacteria to mammals, have the
ability to migrate in response to stimuli or signals that
indicate food, favorable or unfavorable habitat, prey or
predators, etc., through various senses such as sight, hear-
ing, smell, touch and so on. Thus, these organisms are
actively driven toward more favorable regions in heteroge-
neous environments. In the present study, we classify taxes
into two major types, short-range taxis and long-range taxis,
depending on the sensing range of the organisms. With
respect to short-range taxis, we consider the case in which
the sensing range is so narrow, i.e., close to or less than the
body size, that organisms can only perceive the local inten-
sity of the signal and/or its gradient (Shigesada et al. 2015).
On the other hand, long-range taxis, as typically seen in
higher animals, represents the case in which organisms can
perceive environmental stimuli over a range wider than the
body size, by means of sight and other appropriate senses,
and move in the direction where a weighted integral of
stimuli within their sensing range is larger.

A classical example of short-range taxis is chemotaxis,
i.e., the movement of organisms in response to chemi-
cal gradients (Keller and Segel 1970; see also Hillen and
Painter 2009). Such gradient-based taxis has been extended
to higher animals in an ecological context (Shigesada et al.
1979; Shigesada and Roughgarden 1982; White et al. 1996;
Turchin 1998; Okubo and Levin 2001; Cantrell et al. 2006).
On the other hand, in small organisms such as bacteria, the
body length is too short to measure gradients along the body
axis. To resolve this problem, Othmer and Hillen (2002)
presented a non-local model by using an integro-differential
equation (see also Hillen and Painter 2009). However, this
type of model is beyond the scope of the present work (but
see the “Discussion” section).

Recently, Shigesada et al. (2015) studied a reaction-
diffusion-advection equation with short-range taxis in peri-
odic patchy environments in one dimension and investigated
how short-range taxis and the patchy environment interplay
to determine the spatio-temporal distribution of invasive
species and its rate of spread (see also Maciel and Lutscher
2013). As a further step, the present study addresses a
model that incorporates long-range taxis and compares its
effects on the range-expansion of invasive species with
those obtained from the corresponding short-range taxis
model.

In the presence of taxis, either short-range or long-range,
the population in the favorable patches should inevitably
become overcrowded. However, it has been observed with
various insects and animals that as the population density
becomes higher, repulsive interferences among individuals
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could induce density-dependent accelerated dispersal (Kono
1952; Watanabe et al. 1952; Myers and Krebs 1974; Okubo
and Levin 2001). This effect is referred to as population
pressure. Since Gurney and Nisbet (1975) first constructed
density-dependent diffusion models, several authors have
explored the density-dependent dispersal phenomenon from
various angles (Gurtin and MacCamy 1977; Namba 1980;
Shigesada 1980; Mimura and Kawasaki 1980; Séanchez-
Garduiio and Maini 1994; Lutscher 2008).

On the other hand, Morisita (1954) and Morisita (1971)
quantitatively evaluated population pressure by counting the
numbers of antlions that settled in a patchy environment
which consisted of a favorable patch filled with fine sands
and an unfavorable patch with coarse sands. The antlions
showed a strong preference for fine sand over coarse sand
for pit formation, when the population density was low.
However, this tendency was gradually diminished with
increasing densities, until almost equal numbers of individ-
uals were settled in both sands. In order to quantitatively
explain this result, he derived an empirical formula for the
probability of settlement of an individual in each patch as a
function of the total number of antlions initially released and
the environmental favorabilities of the two patches. Based
on Morisita’s experimental data, Shigesada et al. (1979)
proposed a non-linear diffusion model for population pres-
sure, in which the diffusion coefficient is given by a linearly
increasing function of population density (see also Shige-
sada 1980). In the present study, we apply this non-linear
diffusion term to the reaction-diffusion-advection equation
for the periodic patchy environment and investigate how
long-range taxis, population pressure, and environmental
heterogeneity mutually influence in determining the rate of
spread of invading species.

The layout of this article is as follows. In the “Reaction-
diffusion-advection equations incorporating active move-
ment toward favorable environments” section, the short-
and long-range taxis functions are defined in the frame-
work of a reaction-diffusion-advection equation for periodic
environments in one dimension, and a brief summary of
our previous related work is presented. In the “Long-range
taxis model in periodic patchy environments” section, the
reaction-diffusion-advection equation with long-range taxis
for periodic patchy environments is mathematically ana-
lyzed to obtain the formula for the minimum speed of trav-
eling waves. In the “Effects of population pressure” section,
a non-linear reaction-diffusion-advection equation incorpo-
rating population pressure is introduced. First, we derive an
exact traveling wave solution of this model for a special case
when the environment is homogeneous, so that the effect of
population pressure on the traveling wave speed is explicitly
evaluated. Then, the asymptotic spreading speed of the same
model for periodic patchy environments is numerically ana-
lyzed. In the “Discussion” section, we summarize the results
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and discuss our findings in comparison with other relevant
works.

Reaction-diffusion-advection equations
incorporating active movement toward favorable
environments

Short- and long-range taxis models

We consider a periodically varying environment with spa-
tial period L in one dimension and investigate the invasion
processes of a single species by employing the following
reaction-diffusion-advection equation:

on D—azn 8u(x)n+( (x) )n forx € (—oo, 00)
- — r(x)—un)n x € (—o0, )
ot dx2 x "
(H

where n represents the population density n(x, 7) as a func-
tion of position x and time 7. D, u(x) and (r(x) — un)n
are the diffusion coefficient, taxis velocity and growth func-
tion of the logistic type, respectively, where u(x) and r(x)
are periodic functions of spatial period L, and D and p are
positive constants. The taxis velocity, u(x), is supposed to
change with species, depending on by what means and how
far they sense the favorability of the environment. Here, we
propose two kinds of advection velocities, short-range and
long-range taxis velocities, as defined below.

(i) Taxis velocity caused by short-range taxis

Let f(x) be the favorability of an environment at x for
an organism. Here, we assume that the organism has a very
narrow sensing range so that it can perceive the gradient
of favorability only within its immediate vicinity. Thus, the
taxis velocity at x is given by

u(x) = o L9 ®)
dx

where « is referred to as the sensitivity to gradient-based
stimulus (Shigesada et al. 2015).

(i) Taxis velocity caused by long-range taxis

For long-range taxis, we assume that an organism can
survey and evaluate spatial changes in favorability on both
right and left sides, and move toward the direction where a
weighted integral of the stimuli is larger. More specifically,
we denote by F(x) the difference between the weighted
integrals of favorabilities on the right and left sides as
follows (Kawasaki 1978; Turchin 1998):

00 0
Fx) = /0 S(E) f(E+3)dE — / SE)f(E +1)dE. (a)

where s(§) represents the sensory acuity for objects at
distance & from the organism, which satisfies

ds(§)

s(&) =s(—&)>0 and ? <0 foré >0, (3b)

and /Oos(é‘)dé =m,
0

where m is a positive constant. F(x) is hereafter referred
to as the integral-based stimulus. We further assume that
the integral-based stimulus would be processed through the
organism’s nervous and locomotive systems to induce taxis
with velocity u(x) that is generally given in the following
form:

u(x) = G(F(x)), (4a)
where G (y) with y substituting for F'(x) satisfies

dG
CW 20, 6= -Gy, ad lim G =+
(4b)

The first inequality means that the taxis velocity
increases with increase in the integral-based stimulus, y.
The second equation indicates that G (y) is odd with respect
to y = 0 (i.e., the magnitudes of the taxis velocity are the
same for integral-based stimuli, y and —y, although their
directions are opposite). In the last equation, & represents
the maximum taxis speed physiologically attainable for the
organism and is referred to as the taxis intensity. For exam-
ple, the following function satisfies the above conditions
(White et al. 1996; Okubo and Levin 2001)

G(y) = i tanh(Qy), %)

where 6(> 0) is referred to as the sensitivity to integral-
based stimulus. Particularly, when 0 is very large, G(y) is
approximated by

G(y) = u sgn(y), ©)

where sgn(y) = 1 fory > 0,0 for y =0 and —1 for y < 0.

Previous work — existence of asymptotic spreading
speeds and traveling periodic waves

Recently, Shigesada et al. (2015) investigated the follow-
ing general class of reaction-diffusion-advection equations
to address the large-time asymptotics of a solution and its
spreading speed:

B_n = i (D(x)a_n> _ dulx)n
dt 0x 0x 0x
+R(x,n)ninx € (—00, 00), 7

where D(x), u(x), and R(x,n) are periodic functions of
L in x. They presented a theorem about the existence of
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asymptotic spreading speeds and periodic traveling waves,
and the relations between the asymptotic spreading speeds
and the speeds of certain traveling wave solutions (see
Theorem 2.1 of Shigesada et al. (2015)). Since (1) is a
special case of Eq. 7 in which D(x) and R(x, n) are substi-
tuted by constant D and the per capita logistic growth rate,
r(x) — un, respectively, the theorem for the general class of
reaction-diffusion-advection Eq. 7 is simplified for Eq. I as
follows:

Theorem 1 Let the prescribed functions in Eq. 1 satisfy the
following properties: (i) r (x) is uniformly bounded, (ii) u(x)
is integrable, uniformly bounded and piecewise continuous,
and (iii) the equilibrium solution n = 0 of Eq. 1 is unstable.
Then, the following statements hold.

1. Existence of traveling periodic waves: There exist
traveling periodic wave solutions (TPWs) to the left
and right. A rightward TPW of speed c is defined as
follows:

n(x,t—L/c)=n(x+L,t) forany x andt, 8)
lim n(x,t) =0, lim (n(x,t) —n*(x)) =0,
X—00 X——00

where n*(x) is a uniformly positive L-periodic equi-
librium solution of Eq. 1. Equation 8 means that the
spatial pattern of the TPW at any t shifts forward by
one spatial period L with the lapse of time interval
v = L/c. The leftward TPW is defined in a similar
way.

II.  Existence of asymptotic spreading speeds: There exist
two numbers c* and ci with —c* < ¢ such that
every solution n(x,t) of Eq. 1 with 0 < n(x,0) <
n*(x), n(x,0) > 0 on an open interval, and n(x, 0) =
0 outside a bounded set propagates to the right and
left, and has the following properties:

lim max n(x,t) =0 when —c < —c*.
t—>o0x<-—ct

lim max
=00 —c_t<x<cy

. (n*(x) —n(x, 1)) =0
when —c* < —c_ <cy <cl,
lim max n(x,r) =0 whenc > c. 9)
t—oox>ct
That is, ci and c* are the rightward and leftward
asymptotic spreading speeds, respectively.

IIl.  Relation between asymptotic spreading speeds and
TPW speeds: The rightward asymptotic spreading
speed ¢’} can be characterized as the smallest c for
which a rightward TPW of speed c exists. Also ¢* is
the smallest speed of a leftward TPW of Eq. 1.

1V.  Relation between asymptotic spreading speeds and
certain TPW speeds of the linearized equation of
Eq. 1: ¢} can be characterized as the smallest speed c
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for which the linearization

on %n  du()n

—=D— - , 10
ot ax2 ox +rn (10a)
of (1) has a solution of the form,

n(x, 1) = e g(x), (10b)

with s > 0 and g(x) being L-periodic (see also
Shigesada et al. 1986; Weinberger 2002; Berestycki
et al. 2005b).

By using Theorem 1, we have already examined (1) for
periodic environments in which favorable and unfavorable
patches are alternately arranged in one dimension and the
taxis velocity u(x) is caused by the short-range taxis as
given by Eq. 2 with the favorability f(x) proportional to
r(x) (Shigesada et al. 2015). Solving its linearized equa-
tion as given by Eq. 10, we obtained the formula for the
asymptotic speed ¢* as a function of parameters involved in
Eq. 1.

In the next section, we again deal with Eq. 1 in the same
periodic patchy environments as described above except that
the taxis velocity is given by the long-range taxis model
defined in the “Short- and long-range taxis models” section

(ii).

Long-range taxis model in periodic patchy
environments

Taxis velocity

Consider (1) in a periodic patchy environment with favor-
able and unfavorable patches alternately arranged. Here, we
assume that r (x) is a piecewise constant function as follows
(Shigesada et al. 1986; Shigesada et al. 2015):

1)

r1 (Xom <X < Xom41)
r(x) =

2 (Xom41 <X < X2p42)

and L =1 +1»
(m=0,=%£l1,+£2,...),

Xom =mL, xouy1 =mL +1;

where /1 and [, are the widths of the favorable and unfa-
vorable patches, respectively; and x2;,, and x2,,4+1 indicate
the left and right boundaries of the favorable patch located
between x = mL and mL 4 [;. The intrinsic growth rate
r(x) is set to r; (> 0) and ro(< ry) in the favorable and
unfavorable patches, respectively.

As for the taxis velocity u(x), we need to fix explicit
forms of the three functions, f(x), s(x), and G(y) defined
in the “Short- and long-range taxis models” section (ii). As
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a simple and mathematically tractable candidate, here, we
adopt the following functions:

fx) =r), (12a)
s(§) = s(=§) >0 for|§| <o, s(§) =0 for[§| = o
ds(§)
and <0 for0 <& <o, (12b)
G(y) = usgn(y). (12¢)

In Eq. 12a, r(x) is chosen for the favorability of the envi-
ronment at x (Shigesada and Roughgarden 1982; Cantrell
et al. 20006). In Eq. 12b, conditions of s(¢) > O for |{| < o
and s(§) = O for |£| > o are additionally imposed on
the sensory acuity defined in Eq. 3b, because any organ-
ism generally has a limit to its sensory ability. Hereafter, o
is referred to as sensing length. For G(y), we adopt (6) for
simplicity so that an organism undergoes taxis to the right
or left at the maximum speed # as long as the integral-based
stimulus y is not zero, and there is no taxis where y = 0
(but see the “More generalized models” section for G(y) in
a more general case).

Now applying (12) to (1) and rewriting u(x) and F(x) to
us(x) and Fy(x), respectively, we have a long-range taxis
model with the sensing length o in the framework of a
reaction-diffusion-advection equation,

on _ Dazn B oy (x)n

Sr= Do = = B () — . (13a)
where
U (x) = i sgn(Fy(x)), (13b)

0

s(&)r(& +x)d&. (13¢c)

o
Fox) = [ s@r(e +n1de -
—0

Since r(x) is L-periodic in x (i.e., r(x) = r(x 4+ L)) and
even with respect to x = [1/2 (i.e., r(x) = r(l; — x)) and
s(&) is even with respect to £ = 0, F, (x) has the following
general properties for any given o > 0 (see Appendix A for
proof):
Fo(x)=Fs(x+ L) (14a)

Fs(x)=—F4 (1 — x) (odd with respect to x =11 /2). (14b)

(L -periodic in x),

Applying the above equations to Eq. 13b, we have

Ug(x) =ug(x + L) (15a)
Ug(x) = —uy(l; —x) (odd with respect to x =11 /2). (15b)

(L -periodic in x),

Thus, we focus on the region 0 < x < L and calculate
(13c) to have u, (x) for o > 0 as follows (see Appendix B
for proof):

u (0<x <o)

0 (o1 <x=<li—o1)
—u(h—o1<x<li+o) (16)

0(i+o02<x=<L-o07)

U (L—0oy<x<L)

Ug(x) =

where o1 = min(o, [1/2) and o2 = min(o, [»/2).

Figure 1 illustrates u, (x) and r(x) when [} > [ by the
solid and dashed lines, respectively. In Fig. 1a, where the
organism has a sensing length ¢ such that 0 < o < I /2, there
are six subintervals in one spatial period, (0, o), (o, ] —0),
h—o ), 1, h+0),(l1+0,L—0),and (L —o,L).In
each subinterval, both r(x) and u, (x) are constant, whereas
at the interfaces between adjacent subintervals, either r(x)
or uy,(x) is discontinuous. When the organism is located
within o from the nearest interface, it undergoes taxis with
velocity u or —it, because the weighted integral of favorabil-
ity differs between the left and right sensing ranges. How-
ever, when the organism is located away from the interface
by more than ¢ but less than /5 /2, its taxis velocity becomes
zero, because the weighted integral of favorability is the
same on both sides. In Fig. 1b, in which the organism has a
sensing length ¢ such that [, /2 < o < [1/2, there remains
no subinterval where u,(x) = 0 within the unfavorable

(@) 0<o<1,/2

S MR r)
1
: b L,
HENHEEN
ry ™ T Ae— 1, —3T
(b) l/2< o< 1/2
Fo peememeny femeceeeny pcood r
i+ L
Ly |_‘>
oL |
ry e
(c)l/i2<o
SR N r
ad— -
: | B O S V(N
i s
ry = L e— 1 —TT

Fig. 1 Taxis velocity function u, (x) of the long-range taxis when
I < Iy. The solid and dashed lines indicate u, (x) and the intrinsic
growth rate, r(x), respectively. Depending on the sensing length, o,
Uy (x) shows three different patterns that consist of 6, 5, and 4 subin-
tervals in one spatial period ranging 0 < x < L,whena0 <o < /2,
bl/2 <o <11/2,and ¢l /2 < o, respectively. In all cases, us (x) is
L-periodic in x and even with respect to x =11 /2
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patch. Thus, the number of the subintervals is reduced to
five. Furthermore, in Fig. 1¢ for which o > [ /2, there is no
subinterval where u, (x) = 0 in either the favorable patch or
the unfavorable patch except for the points at x = /1/2 and
x = 11 4+ [»/2, so that the number of subintervals becomes
four. This means that organisms located in the areas between
the centers of unfavorable patches and their respective right
adjacent favorable patch move toward the right at speed i,
whereas those located in the remaining areas move toward
the left at the same speed.

On the other hand, when /1 < I, three types of patterns
of uy (x) that are similar to those in Fig. 1 appear, though
the figure corresponding to Fig. 1b contains no subinterval
where u, (x) = 0 within the favorable patch, rather than the
unfavorable patch. Overall, as the sensing length o increases
from 0, the area where the taxis occurs enlarges until it cov-
ers the whole space when o reaches max (I1/2, [,/2) and
stays constant thereafter.

It should be noted that when /; = I, = L/2, the pattern
in Fig. 1b disappears. Incidentally Kawasaki et al. (2012)
previously studied, a similar problem for a specific case of
I =1, =L/)2,0 = L/4,s(&) = 1 for |§] < o and
s(§) =0for|§| = 0.

Asymptotic spreading speed of Eq. 13

Since both r(x) and u,(x) in Eq. 13 are piecewise con-
stant and L-periodic as seen in Fig. 1, assumptions (i) and
(i1) in Theorem 1 are satisfied. Therefore, if assumption (iii)
is satisfied, i.e., the equilibrium solution n = 0 of Eq. 13
is unstable, all the statements (I)—(IV) of Theorem 1 in the
“Previous work — existence of asymptotic spreading speeds
and traveling periodic waves” section hold. Hereafter, under
the condition that n = 0 is unstable, we use statement (III)
to estimate the rightward asymptotic spreading speed c¢* by
the minimum speed of TPWs of Eq. 13, which will be des-
ignated the minimum TPW speed c* hereafter. To be noted,
from statements (III) and (IV) of Theorem 1, the minimum
TPW speed c* equals the minimum speed of solutions of
the linearized Eq. 10a in the form of Eq. 10b. The left-
ward asymptotic spreading speed is evidently the same as
the rightward spreading speed, because r(x) is L-periodic
in x and even with respect to x = [1/2.
Consider the linearized equation of (13) about n = 0,

B_n _ D@ B dug(x)n
ar ax2 dx

and a solution of Eq. 17 having the following form:

+r(x)n, (17)

n(x, 1) =e**g(x), (18)

where z =x —ct,g(x) =g(x+ L) ands > 0.
Since the right-hand side of (18) can be factored into a
product of functions of ¢ and x, we set p(x) = e % g(x),

@ Springer

substitute n(x,1) = e“'p(x) in Eq. 17 and further put
q(x) = Dp’ — uy(x)p. Then, Eq. 17 becomes a system of
first order differential equations,

P\ _(usx)/D 1/DY\ (p
(5)= (550" ) () &

On the other hand, since u (x) and 7 (x) are L-periodic,
the condition that g(x) is L-periodic is rewritten in terms of

pand g as
P(x+L)> —sL (P(X)>
=e . 20
(wx+L) 4(x) 20
Thus, we only need to solve (19) with (20) for one spa-
tial period. Here, we focus on the interval, (0, L). As shown
in Fig. 1, one interval contains six, five, or four subin-
tervals, depending on the sensing length, o. Since all the
coefficients in Eq. 19 are uniformly bounded and piecewise
constant, there exists a solution of (19) that is continuous
across each boundary between subintervals:

+

px;") = p(x;), (21a)

g =q(x;), (21b)
where x; is the location of an interface between two adjacent
subintervals. Since n(x,t) = e p(x) and —Ddn/dx +
ug (x)n = —e®'q(x), Eqs. 21a and 21b correspond to con-
tinuity conditions of the population density and the flux at
the interface, respectively. As these conditions are biologi-
cally reasonable and feasible, we adopt conditions (21) in
the following analyses.

We first solve (19) on (0, L) for the case of 0 < ¢ <
I>/2 that involves six subintervals, (0, o1), (01,11 — o1),
(1 —o1, 1), (1, l1 +02), (1 +02, L —02),and (L — 02, L)
(see Fig. 1a). Since r(x) and u,(x) are constant in each
subinterval, we can easily solve (19) for each subinterval.
Combining the resultant solutions with Eq. 21 successively,
we have

P(L)> O,L) (P(O))
= A" , 22a
(q@) 4(0) (&%)
where
0,L) _ p(L—02,L) 4(1+02,L—02) 4 (1,l1+02)
A - A(ﬁ,rz) A(O,rz) A(—L?,rz)
(l1—o1.l1) 4 (o1,l1—01) 4(0,01)
X A(—ﬁ,rl) A(O’rl) A(ﬁ,rl)’ (22b)
(a,b) i u(b—a)
A(u,r) - b
u . 1 .
coshw + — sinh w — sinh w
2Dv Dv
X 9
sinh w coshw— . sinh w
v 2Dv
(22¢)
A—r u?
w=vb—a), v= T—i—m and A = cs.
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Substituting (20) for x = 0 into (22a), we have the (a)
dispersion relation between ¢ and s as follows:
det (ACP — =) =0, (23)
¢* =099
When there is a set of ¢ > 0 and s > 0 that satisfies (23), 0 0 — i o

the smallest ¢ should be the asymptotic spreading speed c*
of Eq. 13 (cf. Theorem 1 IV). It should be noted that for
the case of /2 < o < [;/2 corresponding to Fig. 1b,
Alrtorl=02) _ 1 h61ds because on = min(a, 2 /2) = b/2,

0.r2)
and for the case of o > [1/2 corresponding to Fig. lc,
A=) — T further holds because o1 = min(a, /1/2) =

11/2. Therefore, Egs. 22 and 23 are valid for all these three
cases.

Here, we briefly explain how to derive ¢* = minc(s)
from the dispersion relation. Since ¢! is the eigenvalue
of AQL) in which ¢ and s are included only as A = cs,
the dispersion relation (23) can be rewritten in the form (see
Appendix C):

1 tr AO-L)
s = —cosh™ ! ———
L 2

where the positive branch of cosh™! is taken. Substituting

(24) into ¢ = X\ /s yields ¢ = A/Q()). Thus, the minimum

TPW speed of Eq. 13 is given as
A

oM

The criterion for successful invasion, i.e., the condition

for the equilibrium n = 0 of Eq. 13 to be unstable, is given
by trAQ-D|, o < 2 (see Appendix C.2).

= Q0(), (24)

* — min (25)
A>0

Numerical results

We first numerically examine what spatio-temporal pattern
the solution of Eq. 13 exhibits for a sufficiently large time.
Numerical simulations are done for varying parameter val-
ues with initial distributions localized around the origin.
We confirm that populations eventually go to extinction
or evolve to a unique asymptotic wave that fits well with
the TPW defined by Eq. 8 in Theorem 1, depending on
whether the equilibrium n = 0 of Eq. 13 is stable or not
Gee., rAOD |, o > 2 or rAQD|,_y < 2). We also cal-
culate the minimum TPW speed c¢*, from Eq. 25. These
results are shown in Figs. 2 and 3, in which the three major
parameters relevant to taxis, i, o, and rp, are varied, while
the other parameters are fixed as [y = 1, [ = 0.5, and
D =ri=pn=1 Notethat wecanset D =rj = u =1
without loss of generality, if we non-dimensionalize (13)
by putting un/ry — N, rit — T, and \/ri/Dx — X
(Kawasaki et al. 2012; Shigesada et al. 2015).

Panels (I), (II), and (IIT) in Fig. 2a illustrate asymptotic
solutions numerically calculated for o = 0.1, 0.3, and 0.5,
respectively, that fall within the ranges specified in Fig. 1a,

150 160 170 180
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X
(b) 2
rs =05
1.5F -1
[
ot (I (I 2
. (1) ?
L 3
05F
0 0f2 1212 0f4 L2 0f6 L2 0t8
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Fig. 2 Effects of the sensing length o on the pattern and speed of
large-time asymptotic solutions of the long-range taxis model. a The
asymptotic solutions numerically obtained for (I) 0 = 0.1, (II) 0 =
0.3, and (IIT) o = 0.5, taken at time interval T*, are plotted. The other
parameters are D = 1,4 =2,r; = 1, = -2,1; = 1,1, = 0.5, and
= 1. The asymptotic solutions closely satisty the conditions for the
TPW solutions defined by (8), where the values of 7, 7* and ¢* are (I)
177.0, 1.49, and 0.99; (I) 148.1, 1.24, and 1.19; and (III) 143.7, 1.22,
and 1.22, respectively. b The solid lines indicate the minimum TPW
speed ¢* obtained from Eq. 25 as a function of o forr, = =3, =2, —1,
0, and 0.5. The other parameters are the same as in a. When o exceeds
11/2, the speed c* is kept constant at the same value as at o = 1 /2.
The black circles labeled (I), (I), and (III) correspond to the speeds ¢*
numerically obtained in (I), (I), and (III) in a, respectively

b, c. The values of 7, and # are chosen as —2 and 2, respec-
tively. In each panel, three successive solutions taken at a
given interval T* (the overline signifies the value numer-
ically obtained) are illustrated. Since these three patterns
can be almost perfectly superimposed when one of them
is moved toward the other by a spatial period L, these
asymptotic solutions are supposed to have closely attained
a TPW. Thus, we numerically estimate the TPW speed by
¢* = L/7T* (see Fig. 2a). As for the spatial patterns of the
asymptotic solutions for any fixed ¢, population density n
sharply increases or decreases with x where u, (x) > 0 or
us(x) < 0, respectively, whereas it changes only gently
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Fig. 3 Effects of the taxis intensity & on the pattern and speed of
asymptotic solutions of the long-range taxis model. a Asymptotic solu-
tions numerically obtained when (I) # = 1, (I) # = 3, and (II)) & = 6,
taken at time interval T*, are plotted. In all cases, o is chosen as 0.3
and the other parameters are the same as in Fig. 2a. The asymptotic
solutions closely satisfy the conditions for the TPW defined by Eq. 8,
where the values of ¢, T* and ¢* are (I) 177.1, 1.49, and 0.99; (II) 138.5,
1.17,and 1.27; and (III) 156.1, 1.33, and 1.12, respectively. b The solid
lines indicate the minimum TPW speed ¢* obtained from Eq. 25 as a
function of & for r, = —3, —2, —1, and 0. The other parameters are
the same as in a. The black circles labeled (I), (II), and (III) corre-
spond to the speed ¢* numerically obtained in (I), (II), and (III) in a,
respectively

where uy (x) = 0. Particularly, when o = 0.5 (i.e., case
(III) in Fig. 2a), there is no place at which u, (x) = 0 so that
organisms located within &L /2 of the center of the favor-
able patch are all attracted toward that center, resulting in a
highly pointed distribution in the middle of each favorable
patch.

In Fig. 2b, the minimum TPW speed c¢* analytically
obtained from Eq. 25 is shown by solid lines as a function of
o for varying values of r,. The speeds ¢* for r, = 0 and 0.5
show slightly one-humped curves within the range 0 < o <
I1/2 and then stay constant for o > [1/2. This is explained
as follows. The initial increase in the speed is brought about
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because a moderate long-range taxis induces an accumu-
lated distribution of organisms in the favorable patches, by
which the overall growth rate is enhanced to result in accel-
erated speed. As o increases further up to /1 /2, however, the
speed tends to gradually decrease because excessive taxis to
favorable patches hinders the dispersal of organisms through
the adjacent unfavorable patches, thereby cancelling out the
effect of the increased overall growth rate. Once o exceeds
11/2, the speed becomes constant, because the pattern of
Uy (x) no longer depends on o (see Fig. 1¢c). When rp, = —1
or —2, the speed initially shows rapid increases for the range
0 <o <1/2 (= 0.25) (Fig. 1a), but the rate of increase
gradually diminishes for /5 /2 < o < 1;/2 (= 0.5) (Fig. 1b),
and then becomes zero when o exceeds /;/2 (Fig. lc).
When r; is further reduced to —3, the speed c* becomes
zero for 0 < o < 0.722, because the equilibrium state
n = 0 of Eq. 13 is stable (i.e., rA®D)|,_y > 2), and then
abruptly shows a sharp rise followed by a saturating curve
that becomes constant after o > [1/2. Black circles labeled
(I), (II), and (III) represent the asymptotic speeds ¢* numer-
ically obtained in (I), (IT), and (III) of Fig. 2a, respectively,
which closely fit the minimum TPW speed ¢* as indicated
by the solid curve for r; = —2.

We next examine the effects of the taxis intensity .
Figure 3a illustrates the asymptotic solutions for it = 1, 3,
and 6 with the other parameters fixed as ¢ = 0.3 and rp, =
—2 (i.e., the pattern of u, (x) is fixed to the case shown in
Fig. 1b). We again confirm that those solutions have closely
attained TPWs. As i increases, the amplitude of the pop-
ulation density between favorable and unfavorable patches
markedly increases, while the population density in the cen-
tral region of the favorable patch where u, (x) = 0 remains
almost flat. Particularly, when & = 6, the population den-
sity is highly elevated in the favorable patches, whereas it
is extremely reduced in the unfavorable patches. We also
numerically estimate the asymptotic speed, ¢* = L/T*, to
be 0.99, 1.27, and 1.12 for u = 1, 3, and 6, respectively.
Figure 3b shows the minimum TPW speed ¢* obtained from
Eq. 25 as a function of & for r, = 0, —1, —2, and —3.
Closed circles labeled (I), (II), and (III) represent the speeds
indicated in (I), (I), and (IIT) of Fig. 3a, respectively. For
any value of r;, ¢* exhibits a one-humped curve and tends to
zero as u — 00, because we have ¢* = O(1/u) as it — oo
in Eq. 25. Comparing (a) and (b) in Fig. 3 suggests that the
reduction in speed c¢* at a large u could be associated with
extremely low population densities in the unfavorable patch
as seen in Fig. 3a (III).

To summarize, although both the sensing length o and
the taxis intensity # involved in long-range taxis are critical
in controlling the minimum speed c*, their effects essen-
tially differ in that the speed ¢* with respect to o shows
either monotonic or one-humped curves that become con-
stant for o > max (I /2, I/2), whereas the speed ¢* with
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respect to & always shows one-humped curves that tend to
zero at i — o0.

More generalized models

In the “Short- and long-range taxis models” section (ii), we
have presented a general taxis velocity function, u(x) =
G(F(x)) where F(x) and G(y) are defined by Eqgs. 3 and
4, respectively. Actually, we have focused on Eq. 13 only
with the simplest taxis function u(x) in which r(x), s(§),
and G(y) are given by Egs. 11, 12b and 12c, respectively.

However, we can extend r(x) somewhat to a more gen-
eral function while maintaining L-periodicity in x and
evenness with respect to x = [;/2. In this case, Eqgs. 14
and 15 still hold. Particularly, when dr(x)/dx > 0 for
—1/2 < x < 11/2, us(x) is given by Eq. 16 in the case
of o1 = 11/2 and o, = [ /2, which corresponds to Fig. lc.
However, if there exists a range of width d in which r(x)
is constant, we can predict that when ¢ < d/2, an area
of length d — 20 where u,(x) = 0 appears in the mid-
dle of that range. Based on these considerations, when G(y)
is given by Eq. 12¢, a method similar to that used in the
“Asymptotic spreading speed of Eq. 13” section can be
applied to obtain the TPW speed.

When G (y) is given by a more generalized function such
as Eq. 5, the mathematical formula for the minimum TPW
speed, Eq. 25, is no longer available, because it is gener-
ally difficult to find an explicit solution of Eq. 19. Thus,
intensive numerical simulations become necessary to derive
TPW speeds c*. Here, we present some numerical results for
the case that r(x) is given by Eq. 11, s(§) = 2(1 —|&|/o) /0o
for 0 < |£] < o and O for |£] > o, and G(y) is given
by Eq. 5. Figure 4a shows Fy (x) (thick dashed curve) and
U (x) (thin solid curves) foroc = 0.4and 6 = 1/2, 1, 2, and
10 with the other parameters kept the same as in Fig. 2. As
0 increases, u, (x) monotonically changes to attain a step-
wise function at 6 = oo, namely, u, = u sgn(F,(x)). By
using u, (x) thus obtained for various ¢ and 6, we perform
numerical simulations of Eq. 13. In Fig. 4b, the asymp-
totic speeds are plotted for 6 = 1/2, 1,2, and 10 on to the
same graph as Fig. 2b. As 0 increases, the speed for each
ro becomes closer to the corresponding solid line that rep-
resents the speed for & — oo. From this figure, we can see
that the speed dependency on o is qualitatively conserved
for a wide range of 6.

Effects of population pressure

So far, we have investigated the long-range taxis model for
patchy environments, Eq. 13, in which both the diffusion
coefficient and the taxis velocity are assumed to be density
independent and found that as the taxis intensity increases,

E(x)

Aed e

04 2 06
o

L2 013

Fig.4 A generalized taxis velocity function and the asymptotic speed.
a A generalized taxis velocity is defined by u, (x) = @ tanh(6 F, (x)),
where r(x) is given by (11) and F, (x) is given by Eq. 13c with the
sensory acuity, s(§) = 2/o(1 — |€|/o) for 0 < |£] < o and O for
&] > o. Fy(x) is illustrated by the thick dashed line for o = 0.4,
and uy (x) is shown by thin lines foroc = 0.4 and 0 = 1/2,1,2,10
and o0o. uy (x) for & = oo corresponds to the solid line in Fig. 1b.
Other parameters are chosen as it = 2, r; = 1,70 = —2,1; = 1, and
I = 0.5. b The asymptotic speeds numerically obtained for 8 = 1/2,
1, 2, and 10 are plotted by triangles, open circles, squares, and closed
circles, respectively, on the same graph as in Fig. 2b. The solid lines
represent the minimum TPW speeds ¢* when 6 = oo

the population becomes overcrowded in favorable patches
while being extremely lowered in unfavorable patches, as
seen in Fig. 3a (III). However, in the overpopulated area,
animals would naturally tend to migrate to areas with a
lower population density because of population pressure
(see the “Introduction” section).

Here, we examine how non-linear diffusion caused by
population pressure influences the spatio-temporal pattern
of the asymptotic wave solution and its spreading speed. As
mentioned in the “Introduction” section, we previously pro-
posed a non-linear diffusion model for population pressure
based on Morisita’s experiments using antlions (Shigesada
et al. 1979). Incorporating that model into Eq. 13, we
have the following non-linear reaction-diffusion-advection
equation:

an 92

Yo m{(DO + Bn)n} —

el | () — pmpn. (26)
ox

The first term on the right-hand side of Eq. 26 represents
a Fokker-Planck diffusion that describes random diffusion
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based on local environmental information (Skellam 1973;
Aronson 1985; Shigesada et al. 2015; Bengfort et al. 2016).
Do (= 0) is the diffusion constant in the absence of pop-
ulation pressure and Bn represents the effect of population
pressure on diffusivity meaning that random dispersal is
more enhanced as the population density at the point of
departure is higher. 8 (> 0) is referred to as the population-
pressure coefficient. For the intrinsic growth rate »(x) and
the taxis velocity u,(x), we adopt a piecewise constant
function (11) and the long-range taxis function defined by
(13b, c), respectively. Since Theorem 1 is not applicable to
Eq. 26 because of non-linearity in the diffusion term, we
study (26) mostly by relying on computer simulations. To
capture fundamental effects of population pressure, how-
ever, we first obtain the exact traveling wave solution of
Eq. 26 for the specific case in which the environment is
homogeneous, and then move to the full model for periodi-
cally patchy environments.

Effects of population pressure in a homogeneous
environment

When the environment is homogeneous where r; = r, = r
and hence u, (x) = 0, Eq. 26 is reduced to

on _ 9? D 7
E_ﬁ{( 0 + pr)n} + (r — un)n. (27)

Particularly, when Dy = 0 and B # 0, Aronson (1980)
and Newman (1980) showed that Eq. 27 has an explicit and
exact traveling wave solution in the form,

r{l exp(/“( ))}(O< <z
- - _Z_Zc _Z Zc,
niz) =1 M 4B

0

(ze £ 2),
(28)

where z = x — ct, z. is the front position of the wave at
t = 0 and c is the speed of the traveling wave as given by

c=r[=. (29)

Notably, the front of the wave at time ¢ is given by
X = z¢ + ct, beyond which the population density is iden-
tically zero, thereby representing the so-called sharp-front
wave (Sanchez-Garduiio and Maini 1994). This frontal pat-
tern fundamentally differs from the smooth-front wave that
appears in the Fisher equation (Fisher 1937), i.e., Eq. 27
with Do > 0 and 8 = 0 (see Fig. 5b).

On the other hand, for the case in which both Dy and
B are positive, neither an explicit traveling wave solution
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Fig. 5 Traveling wave solutions and their speeds of the non-linear
reaction-diffusion equation in a homogeneous environment given by
Eq. 31. a Mathematical formula for the minimum speed ¢’ of the
traveling wave, Eq. 32, is plotted as a function of the population pres-
sure coefficient 8’ by a thin line, on which asymptotic wave speed ¢’
numerically obtained is superimposed by black circles. b Asymptotic
solutions of Eq. 31 numerically calculated are illustrated for g/ = 0,
0.5, 1, 2, and 4 by thick dashed lines. Each solution is arranged in such
a way that the inflection point of the solution falls on the vertical axis.
Exact solutions of the traveling waves given by Eq. 33 are also illus-
trated by thin solid lines for 8/ = 1, 2, and 4. For each g’, the thick
dashed line and thin solid line perfectly coincide with each other. For
comparison, the traveling wave solution with a sharp-front as given by
Eq. 28 for r = u = B = 1 is shown by the thin dashed line

nor its spreading speed seems to have been obtained so far.
Thus, we investigate (27) both analytically and numerically,
and find a formula for the minimum speed of traveling wave
for any B > 0 and its explicit traveling wave solution for
B > 1. The results are summarized below (see Appendix D
for details). Let us introduce the following non-dimensional
quantities:

N LR (30)
r Dy Dou
Then, Eq. 27 becomes
an' 97
e m{(l + B'n"n'} 4+ (1 —n"n’, (€29)
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which contains only one parameter 8. We first carry out
extensive computer simulations of Eq. 31 for various values
of 8" and confirm that any initial distributions with compact
support asymptotically converge to a traveling wave with a
smooth-front. We subsequently found that an exact formula
for the minimum speed of traveling waves of Eq. 31 can be
derived by using the theorem for the traveling wave solu-
tion obtained from a population genetic model by Hadeler
and Rothe (1975) and Hadeler (1983) as shown below (see
Appendix D for proof):

2 O=<p <1,

¢ = JF 1 (32)
T+ 1<p).
B JF( B

It should be noted that the minimum speed for a given
B’ > 0 corresponds to the speed of the asymptotic propagat-
ing solution of Eq. 31 that starts with the initial data having
compact support. We further find that, for any 8’ such that
B’ > 1, the exact and explicit traveling wave solution with
the minimum speed ¢’ is given as follows (see Appendix D):

N28'+1
(I—n") P _ eﬁ(l*lc)’ (33)

n/

where 7 = x'—c't/, ¢’ = /B'+1//B and z. is an arbitrary
constant.

In Fig. 5a, the speed formula (32) is plotted as the thin
line and the asymptotic speed ¢’ numerically obtained is
indicated by closed circles. As expected, the speed numer-
ically obtained closely fits the thin line. Interestingly, the
speed remains at 2 independent of 8’ for 0 < B/ < 1 and
then increases as B increases above 1. In Fig. 5b, asymp-
totic solutions n’(x’, ') at a sufficiently large ¢’ for g/ =
0,0.5,1,2, and 4 are illustrated by thick dashed curves.
For convenience of comparison, the asymptotic solution for
each B’ is arranged in such a way that the inflection point
of n'(x', t'), i.e., the point (x’, n’) at which 8%n’/8x> = 0,
falls on the vertical axis. We can see that as 8 increases,
n’ at the inflection point is reduced. The analytical traveling
wave solution Eq. 33 for 8/ = 1, 2, and 4 is plotted by solid
thin curves, which exactly fit with the corresponding simu-
lated solutions for 8/ = 1, 2, and 4 (thick dashed curves).
According to the classification by Stokes (1976), the fronts
with minimum speed ¢’ = 2 for 0 < 8’ < 1 correspond
to “pulled fronts” as their speed is determined by the lead-
ing edge of the traveling wave solution. On the other hand,
the front with the minimum speed ¢’ = /B’ + 1/4/B’ for
B’ > 1, which is larger than the minimum speed of pulled
fronts, ¢ = 2, corresponds to a “pushed front” because the
speed is determined not by the behavior of the leading edge

of the traveling wave, but by the whole wave-front (Rothe
1981; Garnier et al. 2012).

Now, by carrying out the reverse transformation of Eq. 32
using Eq. 30, we have the formula for the minimum speed
of the traveling wave in the original dimension as

2/rDy
c= (34)
r\/?Jr Do\/E (Do < i),
7 B

where 7 = r/u, which represents the carrying capacity of
the logistic growth function. When 8 < Dg/#, the speed is
given by ¢ = 24/r Dy, which is independent of 8 and exactly
coincides with the traveling wave speed of the Fisher equa-
tion. Accordingly, when 8 < Dy/n, the population pressure
hardly influences the spreading speed. On the other hand,
once B exceeds Dy/1, the speed is monotonically increased
as B increases. Particularly, when Dy = 0 and 8 > 0, i.e,,
in the case of a degenerate non-linear diffusion, the speed is
reduced to r+/B/u, which of course is equal to the traveling
wave speed given by Eq. 29.

(0 < Bn < Dy),

Effects of population pressure in a periodic patchy
environment

Now, we examine (26) for the case in which Dy > 0
and 8 > O in periodic patchy environments. Carrying out
numerical simulations of Eq. 26 for various sets of parame-
ter values, we again confirm that, when the equilibrium state
n = 0 of Eq. 26 is unstable, a population starting from any
localized distribution evolves to an asymptotic wave that
closely fits a traveling periodic wave defined by Eq. 8 in
Theorem 1. Figure 6 illustrates the range expansion patterns
when B = 0 and 1, respectively, while other parameters are
fixed as Do = 0.1, 1 =0.6,0 =05, r1 =1, rp = =2,
l1=1,1,=0.5, and ©=1. Among these parameters, we put
Do =0.1 and r; = u =1 without loss of generality, because
they can be arbitrarily chosen by non-dimensionalizing (26).
In Fig. 6a, where the population pressure does not work,
the central areas of favorable patches are overcrowded to a
level exceeding even the carrying capacity, 7 = 1, whereas
the unfavorable patches are underpopulated. On the other
hand, in the presence of population pressure (Fig. 6b), the
population density becomes drastically reduced in favor-
able patches, while significantly elevated in unfavorable
patches. This means that the population pressure drives
organisms from overcrowded areas in favorable patches
to unfavorable patches, thereby making the distribution
more uniform, as originally demonstrated in the Morisita’s
experiment with antlions described in the “Introduction”
section. As a consequence, it seems that the asymptotic
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Fig. 6 Comparison of asymptotic solutions of Eq. 26 in the presence
and absence of population pressure. Parameters are chosen as 8 = 0 in
a. and § = 1 in b. Other parameters are fixed as Dy = 0.1, 0 = 0.5,
0 =06,r =1,rn=-=-21; =1, =05, and o = 1. The
asymptotic solutions closely fit the definitions for the TPW defined by
Eq. 8, where the values of #, 7% and ¢* = L/t* are a 115.7, 4.13, and
0.36; and b 87.4, 3.12, and 0.48, respectively

spreading speed is accelerated. Incidentally, since (26) is
rewritten as
an 8°n

M = Dot~ L (g em —2p
ar Oaxz_ax (uaxn— ﬂaxn)+(r(x)_l/v”)n,
(35

the non-linear diffusion in Eq. 26 may be viewed as being
equivalent to a simple random diffusion with an additional
advection due to gradient-based taxis (short-range taxis)
toward the direction of lower population density (Skellam
1951, 1973; Okubo and Levin 2001). In fact, we can see
from Fig. 6b that —28dn/dx < 0 where u,(x) > 0 and
vice versa, so that the population pressure acts to attenuate
the effect of the taxis velocity, uy (x).

In Fig. 7a, the asymptotic speeds ¢* numerically calcu-
lated are plotted by closed circles linked by thin dashed
straight lines as a function of taxis intensity & for varying
values of B. All curves exhibit one-humped shapes. The
lowermost curve represents the speed without population
pressure (i.e., B = 0). To be noted, the speed for g = 0.1
indistinguishably overlaps that for 8 = 0, but the speed for
B = 0.2 slightly deviates from them. Thus, the asymptotic
speed ¢* seems to be scarcely influenced by 8 when it is
smaller than a certain value, at least for 0 < 8 < 0.1 in the
present case. As S is increased further, however, each curve
shifts upwards while maintaining the one-humped shape.

This tendency is qualitatively consistent with the mini-
mum traveling wave speed in a homogeneous environment
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Fig. 7 a Asymptotic speed ¢* of the non-linear reaction-diffusion-
advection Eq. 26 numerically obtained is plotted as a function of the
taxis intensity # for 8 = 0, 0.1, 0.2, 0.6, 1, 2, ..., 6 by black
circles linked with dashed straight lines. The other parameters are the
same as in Fig. 6. The lowest curve indicates the asymptotic speed for
B = 0 that is virtually indistinguishable from the asymptotic speed for
B = 0.1. When B exceeds approximately 0.1, the speed monotonically
increases with increases in 8. The maximum speed for each value of
B is indicated by an open circle. b A contour map of asymptotic speed
¢* on (i, B) plane, where the other parameters are the same as in a.
The boxed numerals indicate speed ¢*. The dashed line represents the
ridge of contours

in which the speed maintains a constant value when 8 is
smaller than a certain value and begins to increase as g fur-
ther increases, as described in the “Effects of population
pressure in a homogeneous environment” section.

The open circles in Fig. 7a indicate the maximum speed
for each value of 8. As B increases, the maximum speed
is attained at larger values of i. To better grasp the mutual
influence of # and B on the speed, we draw a contour map
of the asymptotic speed ¢* on (i, B) plane in Fig. 7b, where
a lighter shade of gray indicates a higher speed. The dashed
line indicates the ridge of the contour. To be noted, in the
region for B smaller than around 0.1, the contours are all
perpendicular to the x axis, which means that the speed is
not influenced by f, as already pointed out in Fig. 7(a).
From this figure, we can infer that the speed ¢* increases
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most effectively when both i and 8 are simultaneously
increased along the ridge except for the region where f is
close to zero. In other words, the population pressure and
the taxis synergistically enhance the spreading speed.
Finally, we examine the effects of the scale of patch sizes
by changing /; and /5. As representative examples, we con-
sider two cases in which the patch size is doubled in /; only
or in both /1 and />, relative to those adopted in Fig. 7 (i.e.,
1 = 1,1, = 0.5). In Fig. 8a, black circles for each B
indicate the speed plotted against iz, when (I1, ) = (1, 1)
with the other parameters fixed as Dy = 0.1, 0 = 0.5,
ri = 1, » = —2 and u = 1. For comparison, the cor-
responding results for (I1,1;) = (1, 0.5) shown in Fig. 7a
are superimposed in gray. As a matter of course, the speed
is considerably reduced when the width of the unfavorable

(@) 1=1, 1,=1

1+
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Fig. 8 Asymptotic speed ¢* of the non-linear reaction-diffusion-
advection equation (26) as a function of taxis intensity u for B =
0,1,2,...,6. a Black circles represent the asymptotic speed when
(l1, ) = (1, 1) with the other parameters kept the same as in Fig. 6.
The maximum speed for each § is indicated by an open circle. The
asymptotic speeds in the case of (/1, /2) = (1, 0.5) as shown in Fig. 7a
are superimposed by gray circles for comparison. b Black circles rep-
resent the asymptotic speed when (I;,l) = (2,1) with the other
parameters kept the same as in a. The maximum speed for each B
is indicated by an open circle. The asymptotic speeds for (/1,l) =
(1, 0.5) are superimposed in gray as in a. The double circles repre-
sent the points at which the asymptotic speeds for (/1, /2) = (2, 1) and
(1, 0.5) cross each other

patch alone is doubled. This tendency is more emphasized
as both # and B become larger. This finding seems rea-
sonable, because larger unfavorable patches should cause
greater reductions in population densities in both favorable
and unfavorable patches with concomitant reductions in the
synergistic effect of population pressure and taxis.

Likewise, in Fig. 8b, the speeds for (I1, ) = (2, 1) indi-
cated by black circles are compared with the corresponding
speeds for (I1,/2) = (1,0.5) shown by gray circles. Upon
doubling both /1 and />, the speeds retain similar one-
humped shapes. On closer examination, however, the point
of the black circle at # = 0 lies above that of the gray
circle for each 8. Namely, the speed is higher as the scale
of the patch size is larger, as has been previously reported
(Shigesada et al. 1986). On the other hand, the order of
these speeds is reversed when # exceeds a certain value for
each B as indicated by double circles in Fig. 8b. Accord-
ingly, the maximum point (open circle) for each g is shifted
leftwards and slightly elevated compared with that of the
corresponding gray curve. In other words, the maximum
speed is attained at a smaller value of taxis intensity u for
each S. This means that the effect of taxis is enhanced by
enlargement of the patch scale (see also Kawasaki et al.
2012).

Discussion

We have presented a new model for biological invasions
in periodic patchy environments, in which long-range taxis
and population pressure are incorporated in the framework
of reaction-diffusion-advection equations. We assumed that
long-range taxis is induced by a weighted integral of stimuli
from the environment. As the simplest case, we employed
the taxis velocity function given by Eq. 13b, which is spec-
ified by two parameters, the sensing length o and the taxis
intensity i. The population pressure is incorporated into the
diffusion coefficient that linearly increases with population
density.

We first analyzed the model in the absence of pop-
ulation pressure and demonstrated how long-range taxis
influences the asymptotic solution that starts with a local-
ized distribution and its spreading speed. The effects of
population pressure were then examined for both homoge-
neous and periodic patchy environments. The main results
are as follows. In the absence of population pressure, (i)
any solution evolves to a unique asymptotic wave or tends
to zero depending on whether the equilibrium state n = 0
is unstable or stable, respectively; (ii) with increases in
the taxis intensity #, the minimum TPW speed ¢* shows
a one-humped curve that tends to zero as & — 00; (iii)
with increases in the sensing length o, the minimum TPW
speed c¢* initially increases but tends to become saturated
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after o exceeds max (/1/2, l/2). In the presence of popula-
tion pressure, (iv) traveling wave solutions in homogeneous
environments and their speeds can be analytically obtained,;
(v) in periodic environments, population pressure acts to
monotonically increase the asymptotic speed ¢*. Further-
more, the speed is synergistically enhanced by population
pressure and taxis intensity when they are both increased in
a positively correlated manner.

As described in the “Previous work — existence of
asymptotic spreading speeds and traveling periodic waves”
section, we have recently investigated a reaction-diffusion-
advection Eq. 7 that incorporates short-range taxis with
the taxis velocity of u(x) = o dr(x)/dx (Shigesada et al.
2015). Since r(x) is piecewise constant, taxis occurs only
at the interfaces between the favorable and unfavorable
patches with infinitely large taxis velocities. More specifi-
cally, u(x) = a(r; — r2)8(x) where 6(x) is the Dirac delta
function. By solving this model both numerically and ana-
lytically, we found that if the equilibrium state n = 0 is
unstable, any solution evolves to a unique asymptotic wave
in which the population density discontinuously jumps at
the interfaces, but remains nearly flat within each patch
(Shigesada et al. 2015; see also Maciel and Lutscher 2013).
This flattened distribution in each patch with discontinuous
jumps at the boundaries between neighboring patches is in
marked contrast with the continuous but sharply aggregated
distribution within each favorable patch as observed in the
long-range taxis model (see Fig. 2a (III)). Nevertheless, the
effect of taxis intensity # on the TPW speed in the long-
range taxis model qualitatively resembles the effect of the
taxis sensitivity « in the short-range taxis model in that both
exhibit one-humped response curves (Kawasaki et al. 2012;
Shigesada et al. 2015).

In the integral-based long-range taxis model, we have
implicitly assumed that the taxis velocity, as defined by
Egs. 3a and 4a, is density independent. There have been
a few integral-based long-range taxis models that include
density-dependent effects mostly focusing on animal or
cell aggregation. For example, Kawasaki (1978) (see also
Turchin 1998) proposed a model for animal aggregation,
in which taxis is induced by the difference between the
total populations in the habitats on the left and right sides,
and Armstrong et al. (2006) explained the aggregation
of adhesive cells in both 1- and 2-dimensions using a
sophisticated density-dependent integral-based taxis model
that they referred to as a non-local taxis model. However,
the range expansion in heterogeneous environments was
beyond the scope of their studies.

In the “Effects of population pressure in a homogeneous
environment” section, we have examined a Fisher equation
with non-linear diffusion for a homogeneous environment
as given by Eq. 27 and derived the traveling wave solu-
tion and its speed in an explicit forms. There have been

@ Springer

several other candidates for non-linear diffusion that incor-
porate population pressure. For convenience of comparison,
let us consider a Fisher equation with non-linear diffusion
of Fickian type as follows (Okubo and Levin 2001):

on 0 on
5= x (D(n)£> + (1 —n)n. (36)
When D(n) = Dy + 28n, the above equation is equiva-
lent to Eq. 27. Shakeel (2013) investigated (36) for D(n) =
Dpe’® Y (D, >0, y >0, 0 <n < 1) and numer-
ically found that when y is smaller than a certain value,
the spreading speed of the asymptotic wave remains con-
stant, whereas the speed starts to increases as y exceeds
that threshold. This result is qualitatively similar to the char-
acteristic properties found in the minimum traveling wave
speed as given by Eq. 32. Furthermore, in the two cases
above where the values of D(0) are not zero, the travel-
ing wave solutions form a smooth-front wave. On the other
hand, when the diffusion term is degenerate, i.e., D(0) = 0
with D(n) > 0 for n € (0, 1], Sdnchez-Garduiio and Maini
(1994) proved the existence and uniqueness of a sharp-front
traveling wave for a large family of Fisher equations. How-
ever, as for the Fisher equation with non-linear diffusion in
a periodic patchy environment, the existence of a traveling
periodic wave and its rate of spread have mathematically
not yet been proven for either non-degenerate or degenerate
non-linear diffusion. Although the simulation results pre-
sented in the “Effects of population pressure in a periodic
patchy environment” are based on the simplest non-linear
diffusion model for a heterogeneous environment, we hope
that they may provide a basis for understanding how pop-
ulation pressure, long-range taxis and spatial heterogeneity
of environment interplay to influence the spatial pattern and
its rate of spread.
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Appendix A: Derivation of Eq. 14

Since s(&§) = s(—&), Fy(x) is rewritten in the following
form:

Fyx) = /0 SRy (E)dE 37
where
Re(®) = r(x +8) — r(x — &), (38)

and the value of R, (£) at discontinuity points is assumed to
be zero.

As mentioned in the “Taxis velocity” section, r(x) has
the following properties:
rx)=r(x+1L) (39a)
r(x)=r(1/2 —x) (even with respect to x=_L/2). (39b)

(L - periodic in x) ,

Using Eq. 39a, we have
R.(&)=R,(E+L) (L-periodicin&), (40a)
R, ()= —R,(L — &) (odd with respect to £ =L/2). (40b)
Thus, if we know Ry (&) for 0 < & < L/2, Ry (&) can be

extrapolated for 0 < & < L. Furthermore, by using Eq. 39,
we have

Ry (§)= Ry+1(8)
Ry (§)= —Ri,—x(§) = —Roy+1,—x (&)
(odd with respect to x =11 /2 and [} + I /2). (41b)

Combining (40) and (41) yields that if we know R, (&)
for0 < x <lj/2andl; < x <11 +12/2, Rc(§) can be
extrapolated for 0 < x < L.

Now substituting (41a) into (37), we obtain Fy(x) =
Fs(x + L). Thus, Eq. 14a is proved. Similarly, applying
Ry (&) = —R;,—x(§) in Eq. 41b to Eq. 37, we have F, (x) =
—Fy(l1 — x). Thus, Eq. 14b is proved.

(L - periodic in x) , (41a)

Appendix B: Derivation of (16)

We first calculate R, (¢) for 0 < & < L/2 when x is a point
in0 <x <li/2orl] <x <[y +1/2. From the definition
(38), we have

(@) when0 <x <11/2,

0 (O=<é=<ux),
rr—rp <& <min(; —x, L—(; —x))),
0 (min(/j —x, L—(1—x)<E<L/2),
(42)

Ry (&)=

(b) whenli <x <1 +1/2,
0 O=<ét=<x-1),
—(ri1—=mr) =10 <& <min(x, L —x)),
0 (min(x, L —x) <§ < L/2),
(43)

R:(§) =

Using Eqgs. 40 and 41, Egs. 42 and 43 are extrapolated to
Ry(§)for0 <& < Land0 < x < L as follows:

0 (0=<&=<x,
Ry (x1 <& <x2),
Ry (&) = 0 (=<&=<L-x), (44)
—Rp (L—x2<&§<L—x1),
0 (L—x1<¢(=<1L),

where
(1) whenO0<x <11/2,
Rip =ri—ry>0, x1 =x and
xp = min(ly — x, L — (I} — x)),
(2) whenl1/2<x<l1+1/2,
Rip = —ri+rn <0, xy =1l —x| and
xo = min(x, L — x),
(3) whenli +5L/2<x<L,
Rip =ri—ry>0, x1 =xand
xp = min(x — [, L — (x —[1)).

The above results indicate that R, (§) is odd with respect
to & = L/2 as shown in Eq. 40b, and that R, (§) > O for
0<&<L/2when0<x <Ij/2orl1+1/2 <x < L,and
R:(§) <0for0 <& < L/2whenli/2 <x < L —10)/2.

Taking these results into account together with the condition
for (&) in Eq. 12b, the sign of F, (x) is given as follows:

Fs(x) =f0 s(E)R.(&)dE
+ 0=<é <o),
0 (o1 <&l —o1),
=1 —-—WU—o1 <& <l +m), (45)

0 (h+or<&E<L—-02),
+(L—-0p<&<L),

where o1 = min(o, [1/2) and 0y = min(o, l»/2).
Applying Eq. 45 to Eq. 13b, we obtain (16) in the text.

Appendix C: Derivation of Eq. 24 and criterion for
successful invasion
Derivation of Eq. 24

Because AL is a 2x?2 matrix, Eq. 23 is rewritten as

2
(e_‘YL) —tr AP 4+ det AP = 0. (46)

. . . . u(b—a)
Since the determinant of each AEZ?; inEq.22cise 20

we have det AQ-L) = 1. Thus, Eq. 46 is reduced to
rACD = oL 4 7L = 2 cosh(sL), (47)
which leads to Eq. 24 in the text.
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Criterion for successful invasion

As described in Theorem 1, the criterion for successful
invasion is given by the condition that the trivial solution
n = 0 of Eq. 13 is unstable. Thus, we consider the linearized
Eq. 17 and obtain the condition under which the principal
eigenvalue of the following equation is positive:

d*n  du(x)n
dx? dx
where A is the eigenvalue. Incidentally, the characteristic
equation of (48) is given by Eq. 23 in which s and A are
set 0 and r(x) is replaced by r(x) — A, or equivalently s
is set 0 and X is replaced by A. Thus, the condition for the
eigenvalue of Eq. 48 to be zero, i.e., A = 0, is given by

Eq. 47 withs = A = 0:

+@x)—ANn=0, (48)

wrACD|; o =2,

which indicates the boundary separating stable and unsta-
ble regions in the parameter space. We numerically find that
the parameter region in which the primary eigenvalue of
trA®-L) = 2 is positive is given by

rAOD|, 5 < 2.

Appendix D: The minimum speed and the exact
solution of the traveling wave of Eq. 31

Consider

2 () + Fay (49)
— = n)— n

ot ox ax ’

where

F() = F()=0, Fn)>00 <n < 1),
D) >0(m>0), F(n)and D(n) € C'.

A traveling wave of Eq. 49 with speed ¢ > 0 is a solution
of the form

nx,t)=u(z), z=x—ct, (50)

which is subject to the following conditions:

Z_ljr_rloou(z) =1, Zl_i)ngou(z) =0and0=<u(z) = 1.
Substituting (50) into (49) and setting u’ = v, where the

prime denotes differentiation with respect to z, we have the
following set of ODEs:

w =v, (51a)

,  —cv—D'(w)v? — F(u)
' D(u) ’

(51b)
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which are subject to

Iim u(z) =1, lim u(z) =0,
7—>—00 Z—>00

lim v(z) = lim v(z) =0and 0 <u(z) <1. (52)
Z—>—00 Z—>00

Hadeler and Rothe (1975) and Hadeler (1983) presented
seminal work on traveling waves of Eq. 49, of which the
part relevant to Eq. 31 is summarized as follows:

() Hadeler (1983) showed that with the following variable
transformations,

- - . tds o~ . - -
i—u 5= DG, z=/ & B@ = Fayp@,

0 D(s)’
(33)
Equation 51 is transformed to
W=7,

V=—ct—F@), (54

which are subject to

lim a(z) =1, lim 4(2) =0,
7—>—00 —>00

lim 9(2) = lim v(Z) =0and i(z) >0
7—>—00 7—>00

(see also Engler 1985 and Gilding and Kersner 2004).
(Il) Hadeler and Rothe (1975) showed that when

Fi) =a(l —a)(1+2Ba), (55)

there exist traveling waves of Eq. 54 for 8 > —1/2 and the
minimum speed for each § is given as

1
— (1 .
\/B+ﬁ(sﬂ)

Furthermore, when 8 > 1, the explicit traveling wave
solution with the minimum speed ¢* is given as

c* =

(56)

uz) = (57)

1+ eVB’
Now let us consider (49) with D(u) = 1 4 28u and
F(u) = u(l — u), which is equivalent to Eq. 31. By apply-
ing the transformation (53) to (51) with D(u) = 1 + 2Bu
and F(u) = u(1 — u), we have Eq. 54 with F@) =i(l —
u)(1 4+ 2Bu), which is exactly the same as Eq. 55. There-
fore the minimum speed of the traveling wave of Eq. 49 for
D(n) =1+ 28n and F(n) = n(1 — n) is given by Eq. 56.
To obtain the traveling wave solution of Eq. 31 cor-
responding to Eq. 57, we need to carry out a reverse
transformation of Eq. 57 by using Eq. 53 as follows:
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From Eqgs. 53, 54 and 57, we have
VBe:

Duww=0=i'Q@Z)=————— 58
@) @ =~ (58)
= —/B( —iii = —/B —uu.
Using u’ = v and the above equation, we have
, VB —wu /B —wu
W= — — . (59)
D(u) 1+28u
Solving Eq. 59 gives
2
A=w?™ T B

u

Thus, Eq. 33 is proved.
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