20 research outputs found

    A breathing zirconium metal-organic framework with reversible loss of crystallinity by correlated nanodomain formation

    Get PDF
    The isoreticular analogue of the metal-organic framework UiO-66(Zr), synthesized with the flexible trans-1,4-cyclohexanedicarboxylic acid as linker, shows a peculiar breathing behavior by reversibly losing long-range crystalline order upon evacuation. The underlying flexibility is attributed to a concerted conformational contraction of up to two thirds of the linkers, which breaks the local lattice symmetry. X-ray scattering data are described well by a nanodomain model in which differently oriented tetragonal-type distortions propagate over about 7-10 unit cells

    Ab Initio Parametrized Force Field for the Flexible Metal–Organic Framework MIL-53(Al)

    No full text
    A force field is proposed for the flexible metal–organic framework MIL-53­(Al), which is calibrated using density functional theory calculations on nonperiodic clusters. The force field has three main contributions: an electrostatic term based on atomic charges derived with a modified Hirshfeld-I method, a van der Waals (vdW) term with parameters taken from the MM3 model, and a valence force field whose parameters were estimated with a new methodology that uses the gradients and Hessian matrix elements retrieved from nonperiodic cluster calculations. The new force field predicts geometries and cell parameters that compare well with the experimental values both for the large and narrow pore phases. The energy profile along the breathing mode of the empty material reveals the existence of two minima, which confirms the intrinsic bistable behavior of the MIL-53. Even without the stimulus of external guest molecules, the material may transform from the large pore (lp) to the narrow pore (np) phase [Liu et al. <i>J. Am. Chem. Soc.</i> <b>2008</b>, <i>120</i>, 11813]. The relative stability of the two phases critically depends on the vdW parameters, and the MM3 dispersion interaction has the tendency to overstabilize the np phase

    A Breathing Zirconium Metal-Organic Framework with Reversible Loss of Crystallinity by Correlated Nanodomain Formation

    No full text
    The isoreticular analogue of the metal–organic framework UiO-66(Zr), synthesized with the flexible trans-1,4-cyclohexanedicarboxylic acid as linker, shows a peculiar breathing behavior by reversibly losing long-range crystalline order upon evacuation. The underlying flexibility is attributed to a concerted conformational contraction of up to two thirds of the linkers, which breaks the local lattice symmetry. X-ray scattering data are described well by a nanodomain model in which differently oriented tetragonal-type distortions propagate over about 7–10 unit cells.status: publishe
    corecore