1,182 research outputs found
Influence of hole size on the extraordinary transmission through subwavelength hole arrays
We show that the extraordinary transmission of light through an array of square subwavelength holes is strongly influenced by the size of the holes. For small, square holes (air fraction below 20%), the dependence of the normalized transmission (transmissivity) on hole width greatly exceeds the expectations on the basis of conventional aperture theory. For larger holes, the transmissivity saturates. Moreover, the positions of the transmission maxima shift when the size is varied
Quantitative analysis of several random lasers
We prescribe the minimal set of experimental data and parameters that should
be reported for random-laser experiments and models. This prescript allows for
a quantitative comparison between different experiments, and for a criterion
whether a model predicts the outcome of an experiment correctly. In none of
more than 150 papers on random lasers that we found these requirements were
fulfilled. We have nevertheless been able to analyze a number of published
experimental results and recent experiments of our own. Using our method we
determined that the most intriguing property of the random laser (spikes) is in
fact remarkably similar for different random lasers.Comment: 3 pages, 1 figur
Intrinsic fluctuations in random lasers
We present a quantitative experimental and theoretical study of shot-to-shot
intensity fluctuations in the emitted light of a random laser. A model that
clarifies these intrinsic fluctuations is developed. We describe the output
versus input power graphs of the random laser with an effective spontaneous
emission factor (beta factor).Comment: accepted by Phys. Rev. A. submitted; 7 pages, 5 figure
Bistable hysteresis and resistance switching in hydrogen gold junctions
Current-voltage characteristics of H2-Au molecular junctions exhibit
intriguing steps around a characteristic voltage of 40 mV. Surprisingly, we
find that a hysteresis is connected to these steps with a typical time scale >
10 ms. This time constant scales linearly with the power dissipated in the
junction beyond an ofset power P_s = IV_s. We propose that the hysteresis is
related to vibrational heating of both the molecule in the junction and a set
of surrounding hydrogen molecules. Remarkably, we can engineer our junctions
such that the hysteresis' characteristic time becomes >days. We demonstrate
that reliable switchable devices can be built from such junctions.Comment: Submitted to Phys. Rev. Let
Spatial Extent of Random Laser Modes
We have experimentally studied the distribution of the spatial extent of modes and the crossover from essentially single-mode to distinctly multimode behavior inside a porous gallium phosphide random laser. This system serves as a paragon for random lasers due to its exemplary high index contrast. In the multimode regime, we observed mode competition. We have measured the distribution of spectral mode spacings in our emission spectra and found level repulsion that is well described by the Gaussian orthogonal ensemble of random-matrix theory
Shape resonances in extraordinary transmission
The paper focuses on the extraordinary transmission phenomenon, an example of plasmonics. In a periodic arrangement of sub-wavelength holes in a metal film the transmitted fraction of the incident light exceeds the open air fraction of the film for certain colours. This enhanced transmission has been attributed to a resonant excitation of surface plasmons set up by the periodicity of the array. But by merely changing the shape of the sub-wavelength holes from circular to rectangular can affect the extraordinary transmission
Longterm effects of problem-based learning: a comparison of competencies acquired by graduates of a problem-based and a conventional medical school
BACKGROUND: Problem-based learning (PBL) as an approach to the instruction of medical students has attracted much attentio
Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory
The effect of the aspect ratio of rectangular holes on the transmissivity of periodic arrays of subwavelength holes in optically thick metal films is investigated. The transmissivity is found to be highly dependent on the aspect ratio of the holes. Moreover, the wavelengths of maximum transmissivity show a monotonous shift as a function of the aspect ratio of the holes. We attribute the enhanced transmission of the periodic arrays to an interplay of surface plasmons at the surface of the metal and shape resonances (also known as localized modes) inside the holes. The importance of the shape resonances was confirmed by a comparison of transmission through periodic hole arrays and through randomly distributed holes. Dispersion curves of periodic and random hole arrays confirmed the existence of shape resonance as well. We suggest that the localized modes effectively act as waveguides and increase the coupling efficiency of surface plasmons between both sides of the film, which results in a higher transmissivity. The shift of the maxima of the transmissivity may in part be explained by the spectral position of the localized modes in the individual holes. Finally measurements on similar patterns in Ni and Ag revealed that the occurrence of shape resonances is independent of the material of the film
Modelling survival and connectivity of Mnemiopsis leidyi in the south-western North Sea and Scheldt estuaries
Three different models were applied to study the reproduction, survival and dispersal of Mnemiopsis leidyi in the Scheldt estuaries and the southern North Sea: a high-resolution particle tracking model with passive particles, a low-resolution particle tracking model with a reproduction model coupled to a biogeochemical model, and a dynamic energy budget (DEB) model. The results of the models, each with its strengths and weaknesses, suggest the following conceptual situation: (i) the estuaries possess enough retention capability to keep an overwintering population, and enough exchange with coastal waters of the North Sea to seed offshore populations; (ii) M. leidyi can survive in the North Sea, and be transported over considerable distances, thus facilitating connectivity between coastal embayments; (iii) under current climatic conditions, M. leidyi may not be able to reproduce in large numbers in coastal and offshore waters of the North Sea, but this may change with global warming; however, this result is subject to substantial uncertainty. Further quantitative observational work is needed on the effects of temperature, salinity and food availability on reproduction and on mortality at different life stages to improve models such as used here
- …