112 research outputs found
Assessment of recent outbreaks of Dickeya sp (syn. Erwinia chrysanthemi) slow wilt in potato crops in Israel
Suspected Dickeya sp. strains were obtained from potato plants and tubers collected from commercial plots. The disease was observed on crops of various cultivars grown from seed tubers imported from the Netherlands during the spring seasons of 2004-2006, with disease incidence of 2-30% ( 10% in average). In addition to typical wilting symptoms on the foliage, in cases of severe infection, progeny tubers were rotten in the soil. Six strains were characterised by biochemical, serological and PCR amplification. All tests verified the strains as Dickeya sp. The repPCR and the biochemical assays showed that the strains isolated from blackleg diseased plants in Israel were very similar, if not identical to strains isolated from Dutch seed potatoes, suggesting that the infection in Israel originated from the Dutch seed. The strains were distantly related to D. dianthicola strains, typically found in potatoes in Western Europe, and were similar to biovar 3 D. dadanti or D. zeae. This is the first time that the presence of biovar 3 strains in potato in the Netherlands is described. One of the strains was used for pathogenicity assays on potato cvs Nicola and Mondial. Symptoms appeared 2 to 3 days after stem inoculation, and 7 to 10 days after soil inoculation. The control plants treated with water, or plants inoculated with Pectobacterium carotovorum, did not develop any symptoms with either method of inoculation. The identity of Dickeya sp. and P. carotovorum re- isolated from inoculated plants was confirmed by PCR and ELISA
Estimating the delay between host infection and disease (incubation period) and assessing its significance to the epidemiology of plant diseases.
Knowledge of the incubation period of infectious diseases (time between host infection and expression of disease symptoms) is crucial to our epidemiological understanding and the design of appropriate prevention and control policies. Plant diseases cause substantial damage to agricultural and arboricultural systems, but there is still very little information about how the incubation period varies within host populations. In this paper, we focus on the incubation period of soilborne plant pathogens, which are difficult to detect as they spread and infect the hosts underground and above-ground symptoms occur considerably later. We conducted experiments on Rhizoctonia solani in sugar beet, as an example patho-system, and used modelling approaches to estimate the incubation period distribution and demonstrate the impact of differing estimations on our epidemiological understanding of plant diseases. We present measurements of the incubation period obtained in field conditions, fit alternative probability models to the data, and show that the incubation period distribution changes with host age. By simulating spatially-explicit epidemiological models with different incubation-period distributions, we study the conditions for a significant time lag between epidemics of cryptic infection and the associated epidemics of symptomatic disease. We examine the sensitivity of this lag to differing distributional assumptions about the incubation period (i.e. exponential versus Gamma). We demonstrate that accurate information about the incubation period distribution of a pathosystem can be critical in assessing the true scale of pathogen invasion behind early disease symptoms in the field; likewise, it can be central to model-based prediction of epidemic risk and evaluation of disease management strategies. Our results highlight that reliance on observation of disease symptoms can cause significant delay in detection of soil-borne pathogen epidemics and mislead practitioners and epidemiologists about the timing, extent, and viability of disease control measures for limiting economic loss.ML thanks the Institut Technique français de la Betterave industrielle (ITB) for funding this project. CAG and JANF were funded by the UK’s Biotechnology and Biological Sciences Research Council (BBSRC). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
PREPARATION PROCEDURES OF FUNGAL PHYTO-PATHOGENS SAMPLES FOR ANALYSIS BY MALDI-TOF AND FTIR MICROSCOPY
Reliable and rapid identification of phyto-pathogens causing plant diseases is playing an important role in their control strategies. The available methods for identification of fungi are time consuming and not always very specific. MALDI-TOF and Fourier-transform infrared (FTIR) microscopy are proved to be comprehensive and sensitive analytical methods for detection of molecular changes in cells. Due to the similarity between the obtained spectra of different species of fungal pathogens, it is important to choose the most appropriate procedure for the preparation of the examined samples. Such procedure might improve the discrimination between these species. In the present study, we compared between three possible procedures of pathogen sample preparation for their examination by MALDI-TOF and FTIR microscopy. Our results showed that preparation of the fungal sample directly from liquid growth media is considered as the best way of fungal sample preparation for both MALDI-TOF and FTIR microscopy examination
The effect of temperature on the phenotypic features and the maceration ability of Dickeya solani strains isolated in Finland, Israel and Poland
Verticillium wilt of olive: a case study to implement an integrated strategy to control a soil-borne pathogen
Direct Estimation of Local pH Change at Infection Sites of Fungi in Potato Tubers
Fungi can modify the pH in or around the infected site via alkalization or acidification, and pH monitoring may provide valuable information on host–fungus interactions. The objective of the present study was to examine the ability of two fungi, Colletotrichum coccodes and Helminthosporium solani, to modify the pH of potato tubers during artificial inoculation in situ. Both fungi cause blemishes on potato tubers, which downgrades tuber quality and yield. Direct visualization and estimation of pH changes near the inoculation area were achieved using pH indicators and image analysis. The results showed that the pH of the area infected by either fungus increased from potato native pH of approximately 6.0 to 7.4 to 8.0. By performing simple analysis of the images, it was also possible to derive the growth curve of each fungus and estimate the lag phase of the radial growth: 10 days for C. coccodes and 17 days H. solani. In addition, a distinctive halo (an edge area with increased pH) was observed only during the lag phase of H. solani infection. pH modulation is a major factor in pathogen–host interaction and the proposed method offers a simple and rapid way to monitor these changes. </jats:p
Direct identification of potato's fungal phyto-pathogens by Fourier-transform infrared (FTIR) microscopy
Fungi are considered as serious pathogens to many plants and can cause a severe economic damage. The available methods for identification of fungi are time consuming and not always very specific. In the present study we examined the potential of FTIR microscopy for direct detection and identification of different fungal potato pathogens on the surface of potato tubers. Unique spectral bands for each of the examined fungal pathogens appeared in the spectra of naturally infected potatoes. These results strongly support the potential of FTIR microscopy for successful detection and probably discrimination between different fungal pathogens directly from the infected tissue.</jats:p
Control of potato powdery scab (Spongospora subterranea) in Israel with chloropicrin, metam sodium or fluazinam
- …
