1,681 research outputs found

    Cross Saharan transport of water vapour via recycled cold-pool outflows from moist convection

    Get PDF
    Very sparse data has previously limited observational studies of meteorological processes in the Sahara. We present an observed case of convectively-driven water vapour transport crossing the Sahara over 2.5 days in June 2012, from the Sahel in the south to the Atlas in the north. A daily cycle is observed, with deep convection in the evening generating moist cold pools that fed the next day’s convection; the convection then generated new cold pools, providing a vertical recycling of moisture. Trajectories driven by analyses were able to capture the direction of the transport but not its full extent, particularly at night when cold pools are most active, and analyses missed much of the water content of cold pools. The results highlight the importance of cold pools for moisture transport, dust and clouds, and demonstrate the need to include these processes in models in order to improve the representation of Saharan atmospher

    Feasibility studies for quarkonium production at a fixed-target experiment using the LHC proton and lead beams (AFTER@LHC)

    Get PDF
    Used in the fixed-target mode, the multi-TeV LHC proton and lead beams allow for studies of heavy-flavour hadroproduction with unprecedented precision at backward rapidities - far negative Feyman-x - using conventional detection techniques. At the nominal LHC energies, quarkonia can be studies in detail in p+p, p+d and p+A collisions at sqrt(s_NN) ~ 115 GeV as well as in Pb+p and Pb+A collisions at sqrt(s_NN) ~ 72 GeV with luminosities roughly equivalent to that of the collider mode, i.e. up to 20 fb-1 yr-1 in p+p and p+d collisions, up to 0.6 fb-1 yr-1 in p+A collisions and up to 10 nb-1 yr-1 in Pb+A collisions. In this paper, we assess the feasibility of such studies by performing fast simulations using the performance of a LHCb-like detector.Comment: 12 pages, 14 figure

    Heavy-ion Physics at a Fixed-Target Experiment Using the LHC Proton and Lead Beams (AFTER@LHC): Feasibility Studies for Quarkonium and Drell-Yan Production

    Get PDF
    We outline the case for heavy-ion-physics studies using the multi-TeV lead LHC beams in the fixed-target mode. After a brief contextual reminder, we detail the possible contributions of AFTER@LHC to heavy-ion physics with a specific emphasis on quarkonia. We then present performance simulations for a selection of observables. These show that ΄(nS)\Upsilon(nS), J/ψJ/\psi and ψ(2S)\psi(2S) production in heavy-ion collisions can be studied in new energy and rapidity domains with the LHCb and ALICE detectors. We also discuss the relevance to analyse the Drell-Yan pair production in asymmetric nucleus-nucleus collisions to study the factorisation of the nuclear modification of partonic densities and of further quarkonia to restore their status of golden probes of the quark-gluon plasma formation.Comment: 18 pages, 7 figure

    Characteristics and Outcomes of Patients with Vasoplegic Versus Tissue Dysoxic Septic Shock

    Get PDF
    Background: The current consensus definition of septic shock requires hypotension after adequate fluid challenge or vasopressor requirement. Some patients with septic shock present with hypotension and hyperlactatemia greater than 2 mmol/L (tissue dysoxic shock), whereas others have hypotension alone with normal lactate (vasoplegic shock). Objective: The objective of this study was to determine differences in outcomes of patients with tissue dysoxic versus vasoplegic septic shock. Methods: This was a secondary analysis of a large, multicenter randomized controlled trial. Inclusion criteria were suspected infection, two or more systemic inflammatory response criteria, and systolic blood pressure less than 90 mmHg after a fluid bolus. Patients were categorized by presence of vasoplegic or tissue dysoxic shock. Demographics and Sequential Organ Failure Assessment scores were evaluated between the groups. The primary outcome was in-hospital mortality. Results: A total of 247 patients were included, 90 patients with vasoplegic shock and 157 with tissue dysoxic shock. There were no significant differences in age, race, or sex between the vasoplegic and tissue dysoxic shock groups. The group with vasoplegic shock had a lower initial Sequential Organ Failure Assessment score than did the group with tissue dysoxic shock (5.5 vs. 7.0 points; P = 0.0002). The primary outcome of in-hospital mortality occurred in 8 (9%) of 90 patients with vasoplegic shock compared with 41 (26%) of 157 in the group with tissue dysoxic shock (proportion difference, 17%; 95% confidence interval, 7%–26%; P < 0.0001; log-rank test P = 0.02). After adjusting for confounders, tissue dysoxic shock remained an independent predictor of in-hospital mortality. Conclusions: In this analysis of patients with septic shock, we found a significant difference in in-hospital mortality between patients with vasoplegic versus tissue dysoxic septic shock. These findings suggest a need to consider these differences when designing future studies of septic shock therapies

    Feasibility Studies for Single Transverse-Spin Asymmetry Measurements at a Fixed-Target Experiment Using the LHC Proton and Lead Beams (AFTER@LHC)

    Get PDF
    The measurement of Single Transverse-Spin Asymmetries, A_N, for various quarkonium states and Drell–Yan lepton pairs can shed light on the orbital angular momentum of quarks and gluons, a fundamental ingredient of the proton-spin puzzle. The AFTER@LHC proposal combines a unique kinematic coverage and large luminosities thanks to the Large Hadron Collider beams to deliver precise measurements, complementary to the knowledge provided by collider experiments such as at RHIC. In this paper, we report on sensitivity studies for J/ ψ, ΄ and Drell–Yan A_N done using the performance of LHCb-like or ALICE-like detectors, combined with polarised gaseous hydrogen and helium-3 targets. In particular, such analyses will provide us with new insights and knowledge about transverse-momentum-dependent parton distribution functions for quarks and gluons and on twist-3 collinear matrix elements in the proton and the neutron

    Heavy-ion Physics at a Fixed-Target Experiment Using the LHC Proton and Lead Beams (AFTER@LHC): Feasibility Studies for Quarkonium and Drell-Yan Production

    Get PDF
    We outline the case for heavy-ion-physics studies using the multi-TeV lead LHC beams in the fixed-target mode. After a brief contextual reminder, we detail the possible contributions of AFTER@LHC to heavy-ion physics with a specific emphasis on quarkonia. We then present performance simulations for a selection of observables. These show that ΄(nS)\varUpsilon (nS) , J/ψJ/\psi and ψ(2S)\psi (2S) production in heavy-ion collisions can be studied in new energy and rapidity domains with the LHCb and ALICE detectors. We also discuss the relevance to analyse the Drell–Yan pair production in asymmetric nucleus–nucleus collisions to study the factorisation of the nuclear modification of partonic densities and of further quarkonium states to restore their status of golden probes of the quark–gluon plasma formation.Peer Reviewe

    The Small RNA Teg41 Regulates Expression of the Alpha Phenol-Soluble Modulins and Is Required for Virulence in \u3ci\u3eStaphylococcus aureus\u3c/i\u3e

    Get PDF
    Small RNAs (sRNAs) remain an understudied class of regulatory molecules in bacteria in general and in Gram-positive bacteria in particular. In the major human pathogen Staphylococcus aureus, hundreds of sRNAs have been identified; however, only a few have been characterized in detail. In this study, we investigate the role of the sRNA Teg41 in S. aureus virulence. We demonstrate that Teg41, an sRNA divergently transcribed from the locus that encodes the cytolytic alpha phenolsoluble modulin (αPSM) peptides, plays a critical role in αPSM production. Overproduction of Teg41 leads to an increase in αPSM levels and a corresponding increase in hemolytic activity from S. aureus cells and cell-free culture supernatants. To identify regions of Teg41 important for its function, we performed an in silico RNA-RNA interaction analysis which predicted an interaction between the 3= end of Teg41 and the αPSM transcript. Deleting a 24-nucleotide region from the S. aureus genome, corresponding to the 3= end of Teg41, led to a 10-fold reduction in αPSM-dependent hemolytic activity and attenuation of virulence in a murine abscess model of infection. Restoration of hemolytic activity in the Teg41Δ3= strain was possible by expressing full-length Teg41 in trans. Restoration of hemolytic activity was also possible by expressing the 3= end of Teg41, suggesting that this region of Teg41 is necessary and sufficient for αPSMdependent hemolysis. Our results show that Teg41 is positively influencing αPSM production, demonstrating for the first time regulation of the αPSM peptides by an sRNA in S. aureus
    • 

    corecore