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J.P. Lansberg · C. Lorcé · L. Massacrier · C. Quintans ·
A. Signori · B. Trzeciak

Feasibility Studies for Single Transverse-Spin Asymmetry
Measurements at a Fixed-Target Experiment Using the
LHC Proton and Lead Beams (AFTER@LHC)

JLAB-THY-17-2401

Abstract The measurement of Single Transverse-Spin Asymmetries, AN , for various quarkonium states and
Drell-Yan lepton pairs can shed light on the orbital angular momentum of quarks and gluons, a fundamental
ingredient of the proton-spin puzzle. The AFTER@LHC proposal combines a unique kinematic coverage and
large luminosities thanks to the Large Hadron Collider beams to deliver precise measurements, complemen-
tary to the knowledge provided by collider experiments such as at RHIC. In this paper, we report on sensitivity
studies for J/ψ, Υ and Drell-Yan AN done using the performance of LHCb-like or ALICE-like detectors, com-
bined with polarised gaseous hydrogen and helium-3 targets. In particular, such analyses will provide us with
new insights and knowledge about transverse-momentum-dependent parton distribution functions for quarks
and gluons and on twist-3 collinear matrix elements in the proton and the neutron.
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1 Introduction

1.1 Single Transverse-Spin Asymmetries: what for?

The spin is a fundamental quantity of a nucleon, yet its origins are largely unknown. It has been a topic of
intense theoretical and experimental studies since the European Muon Collaboration reported that the spin of
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constituent quarks only accounts for a small fraction of the observed spin, 1/2 [1]. Nowadays, it is accepted
that both quarks and gluons as well as their relative motion, via the orbital angular momentum (OAM),
contribute to the nucleon spin. For instance, in the case of a longitudinally polarised nucleon, i.e. with helicity
+ 1

2 , the spin is given by a sum rule
1
2

=
1
2
∆Σ + ∆G +Lq +Lg , (1)

where 1
2∆Σ is the combined spin contribution of the quarks and the antiquarks, ∆G is the gluon spin, and Lq,g

are the quark and gluon OAM contributions. Recent experimental data have shown that the spin distributions
of quarks and antiquarks only account for about 25% of proton total longitudinal spin [2], and that of the
gluons for about 20% for x > 0.05 [3], yet compatible with zero. The remaining proton spin therefore should
arise from the relative dynamics of quarks and gluons, i.e. viaLq andLg. Understanding the parton transverse
dynamics should then shed light on the origin of the proton spin.

The transverse-spin distributions give access to the aforementioned intrinsic properties of the proton con-
stituents: their transverse and orbital-angular momenta. Contrary to the quark sector, very little is known about
the gluon contributions via ∆G and Lg to the transverse spin. Only recently, COMPASS observed a non-zero
asymmetry on the order of 20% (2σ away from zero) which hints at a non-zero value of Lg [4, 5]. Indeed,
whereas Single Transverse-Spin Asymmetries (STSAs), AN , are not directly connected toLq,g, a non-zero AN
imposes that Lq,g is non-zero.

Such studies require gluon-sensitive observables. Naturally, quarkonium production can serve as such
tool, since the gluon fusion is the dominant contribution to these processes in high-energy hadron collisions
(see [6–8] for RHIC energies). Thanks to many different experiments performed in the last decades (for
reviews see [9–11]), measuring quarkonia via leptonic decays became a relatively straightforward task. The
downside remains a lower production cross-section compared to light mesons, which calls for large integrated
luminosities. Lastly, accessing transverse-spin physics research requires a polarised target.

At the moment, only the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory
provides polarised pp collisions at large enough energies for STSA measurements for quarkonia. Indeed, the
PHENIX collabration [12] pioneered the studies of p↑p → J/ψX. The precision of the measurement is how-
ever very limited and did not allow to claim for a non-zero STSA, or to constrainLg. The COMPASS detector
is probably the other existing experimental set-up where quarkonium STSA can be measured. Measurements
of other quarkonium states are extremely important. First, J/ψ production involves a complicated pattern of
feed downs and vector quarkonium production is not the easiest case to analyse theoretically. C-even quarko-
nia (χc,b, ηc) which can be produced alone without recoiling gluons indeed offer some advantages. We refer
to [13–16] for more details.

1.2 AFTER@LHC: why ?

AFTER@LHC is a proposal [17] for a fixed-target experiment using the LHC proton and heavy-ion beams
at high and continuous luminosities, yet parasitic to the other LHC experiments. It bears on a particularly
wide range of physics opportunities [15, 18–51] thanks to the typical boost of the fixed-target mode between
the center-of-mass (c.m.s.) and the laboratory frame converting forward detectors into backward ones, to
relatively high luminosities and not too low c.m.s. energies, 115 GeV per nucleon with the 7 TeV proton
beam and 72 GeV per nucleon with the 2.76 TeV lead beam. In this energy range, the cross section for
quarkonium production is already high and gluon fusion dominates. Larger charmonium, bottomonium, D, B
and Drell-Yan pair yields are expected compared to previous fixed-target experiments.

AFTER@LHC will also give access to the target-fragmentation region xF → −1, with detectors similar
to the ALICE or LHCb ones, enabling the exploration of large momentum fractions in the target. Moreover,
it is relatively easy to use a polarised gas target [52] in one of the existing LHC experiments keeping high
integrated luminosities. Doing so, spin studies in the gluon sector via gluon-sensitive probes become more
than possible with the investigation of spin correlations such as the Sivers effect [53–56] or the correlation
between the gluon transverse momentum (denoted kT thereafter) and the nucleon spin.

All this allows for measurements of gluon sensitive probes with an unprecedented quality in a region, large
x↑, where theory calculations [35] predict that the effect (the observed spin-correlated azimuthal modulation
of the produced particles) is the largest. We stress that the same observation obviously holds for open heavy
flavour and Drell-Yan pairs.



3

The structure of the paper is as follows. In the next section, we recall some theoretical concepts related
to spin studies with AFTER@LHC. Next, we present feasibility studies for STSAs and prospects for other
spin-related measurements. The last section gathers our conclusions.

2 Theory

In order to measure the parton OAM, one should consider observables which are sensitive to both the parton
transverse position and momentum. These are usually related to the Generalised Parton Distributions, acces-
sible via exclusive processes. However, one can also indirectly obtain information on the orbital motion of
partons via STSAs in hard-scattering processes, where one of the colliding hadrons is transversely polarised
(see e.g. [55, 56] for recent reviews). These asymmetries are naturally connected to the transverse motion of
partons inside hadrons [57].

The STSA, denoted by AN , is the amplitude of the spin-correlated azimuthal modulation of the produced
particles:

AN =
1
P
σ↑ − σ↓

σ↑ + σ↓
, (2)

where σ↑ (↓) is the differential cross section (or yield) of particles produced with the target spin polarised
upwards (downwards) with respect to the incoming beam direction, and P is the effective target polarisation.
Studying AN is of particular interest because leading-twist collinear perturbative QCD predicted it to be small
(AN ∝ mq/pT ∼ O(10−4)), while the measured AN was observed to be ∼ 10% or even larger at high xF in
polarised collisions over a broad range of energies [58–60]. For example, at Fermilab STSAs on the order of
10% were measured in hadronic polarised hyperon production [61, 62] and pion production [59, 63–65].

Since then, the study of spin asymmetries has rapidly evolved, both from the theoretical and experimental
point of view (for detailed insights into spin physics and azimuthal asymmetries, see e.g. [66–76]). This
triggered investigations of the hadron structure beyond the collinear parton model, and different mechanisms
were proposed to account for spin asymmetries [68, 69].

The first interpretation of STSAs relied on a collinear factorisation framework [77, 78], involving inter-
actions of gluons from the target remnants with the active partons in the initial and final states. This is ac-
counted for by collinear twist-3 (CT3) matrix elements, the so-called Efremov-Teryaev-Qiu-Sterman (ETQS)
matrix elements. Later, Sivers proposed an explanation [53, 79] based on a correlation between the trans-
verse momentum of the quark and the polarisation of the proton, introducing the quark transverse momentum
dependent parton distribution function (TMD PDF) f⊥1T (x, k2

T ) (the so-called Sivers function). The common
feature of these two mechanisms is that an imaginary phase required for the non-vanishing asymmetry is gen-
erated by taking into account an additional gluon exchange between the active parton and the remnant of the
transversely polarised hadron.

The CT3 formalism is valid for processes with only one characteristic hard scale, for instance the trans-
verse momentum of a produced hadron, satisfying phT � ΛQCD, in a proton-proton collision. The TMD for-
malism [80–84], on the other hand, is suited for processes with two characteristic and well-separated scales
(for example, in Drell-Yan process, the mass M and the transverse momentum pT of the produced lepton
pair, where ΛQCD . pT � M) 1 . When the two relevant scales become comparable, the TMD formalism
can be then reduced to the CT3 one. In practice, this is realised in terms of an operator product expansion,
since the Sivers TMD function can be matched onto the ETQS matrix elements at large transverse momenta.
Thus, depending on the process, AN should be addressed either using the CT3 formalism through 3-parton
correlation functions, or the TMD formalism through the Sivers function.

One of the most important predictions, shared by both approaches, is the predictable, but non-universal,
magnitude of this asymmetry in different process. The experimental check of this feature is one of the mile-
stones of the AFTER@LHC spin physics program.

1 See also e.g. [85, 86] for what is known in the literature as the generalised parton model, which is an extension of the
collinear perturbative QCD approach to incorporate the transverse dynamics of partons, and resembles the TMD formalism from
a more phenomenological perspective.
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2.1 Quark Sivers effect

Drell-Yan (DY) lepton-pair production is a unique playground to understand the physics underlying the Sivers
effect: it is theoretically very well understood and the quark Sivers function f⊥q

1T (x, k2
T ) enters the differential

cross sections for DY and semi-inclusive deep inelastic scattering (SIDIS) with opposite sign [87]:

f⊥q
1T (x, k2

T )
∣∣∣∣
DY

= − f⊥q
1T (x, k2

T )
∣∣∣∣
SIDIS

. (3)

f⊥q
1T (x, k2

T ) accounts for the number density of unpolarised quarks carrying a longitudinal fraction x of the
proton momentum and with transverse momentum kT for a given transverse spin of the proton S T . The ver-
ification of this ”sign change” is the main physics case of the DY COMPASS run [88] and the experiments
E1039 [89] and E1027 [90] at Fermilab. AFTER@LHC is a complementary facility to further investigate
the quark Sivers effect by measuring DY STSAs [35, 51] over a wide range of x↑ in a single set-up. With
the high precision that AFTER@LHC will be able to achieve, it will clearly consolidate previous possible
measurements. In the case the asymmetry turns out to be small and these experiments cannot get to a clear
answer, AFTER@LHC could still confirm or falsify this sign-change prediction and put strict constraints on
the Sivers effect for quarks.

In addition, given that this asymmetry can be framed as well within the CT3 approach when the transverse
momentum of the produced lepton pair is comparable to its mass, AFTER@LHC will also generate very
useful data to constrain the ETQS 3-parton correlation functions. The latter can also be determined by using
direct γ production [91].

2.2 Gluon Sivers effect

The gluon Sivers function is more involved than its quark analogue: different processes probe different gluon
Sivers functions, due to the inherent process dependence of this TMD function [92, 93]. However all of
them can be expressed in terms of only two independent functions [92, 94], which will appear in different
combinations depending on the process. AFTER@LHC will prove to be extraordinary useful in disentangling
them and testing this generalised universality.

Drell-Yan lepton-pair production is the golden process to access the intrinsic transverse motion of quarks
in a nucleon. However, there is no analogous process, which is at the same time experimentally clean and
theoretically well-controlled, to probe the gluon content. One of the best tools at our disposal is the production
of quarkonium states and open heavy-flavour mesons, a major strength of AFTER@LHC. They provide final
states with a typical invariant mass (MQ) which is, on the one hand, small enough to be sensitive to the
intrinsic transverse momenta of gluons (kT ), and on the other, large enough to realise the hierarchy of scales
(MQ � kT ), and thus to allow for the TMD formalism to be applied without pollution from higher-twist
effects. To this extent, production of C-even states can be fruitfully investigated [14, 15, 19, 23, 84, 95].

The hadroproduction of ηc has already been measured by LHCb at high transverse momentum above
pT = 6 GeV [96], as well as non-prompt ηc(2S ) [97]. With an LHCb-like detector, STSAs for χc, χb and ηc
are at reach, as demonstrated by studies of various χc states [98, 99] in the busier collider environment down
to pT as low as 2 GeV. At lower energies, the reduced combinatorial background will give access to lower pT .
Moreover, with AFTER@LHC, the production of J/ψ, ψ′ and Υ will also allow for accurate measurements
of the gluon Sivers effect, as it is shown in the next Section.

The open heavy-flavour production also allows to investigate the process dependence of AN (measuring
charm quarks and anti-quarks separately) [100]. Moreover, it is a unique probe of C-parity odd twist-3 tri-
gluon correlators [101, 102], for which AFTER@LHC will obtain valuable information.

Finally, momentum imbalance observables also provide a very useful handle to probe the gluon Sivers
function and its kT dependnce. J/ψ + γ production, is probably one of the cleanest from the theoretical point
of view [103] along with di-J/ψ production.
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3 Feasibility studies for quarkonium and DY AN

3.1 Simulation setup

We consider here two possible options for the realisation of AFTER@LHC with a polarised target: using the
LHCb detector [104] or the ALICE detector [105]. LHCb is a multi-purpose, single arm detector with a precise
microvertexing instrumentation, particle identification systems, electromagnetic and hadronic calorimeters. It
has capabilities for an accurate primary and secondary vertex location determination, for a particle identifi-
cation (including π,K, p, e and µ) with a good momentum resolution and a high rate data acquisition system.
LHCb has already successfully run in the fixed-target mode using its luminosity monitor SMOG (System
for Measuring the Overlap with Gas) [106] as a gas target. However, the data taking was done over limited
periods of time and limited gas pressures. Additional feasibility studies are needed to address the possibility
of installing a polarised gas target. The simulation setup we will use for a LHCb-like detector is described in
detail in [34]. We therefore only outline here the most relevant information for Drell-Yan and J/ψ , Υ → µ+µ−

measurements, namely: the single muon tracking and the identification efficiency is ∼ 98% and the kinematic
acceptance is 2 < η < 5 and a pT threshold is set at pT > 0.7 GeV/c. However, for the studies presented in this
paper, we used a more stringent cut of pT > 1.2 GeV/c which usefully reduces the uncorrelated background.

For ALICE, a target can in principle be placed, either at the nominal interaction point (IPZ = 0), or
upstream from the nominal one (for instance at 5 m, IPZ = −5 m). The Muon Spectrometer would then
provide a setup for di-muon pair measurements with a single track acceptance of 2.5 < η < 4 for IPZ = 0, and
3.2 < η < 4.2 for IPZ = −5 m. The Muon Forward Tracker (MFT) [107], which will be installed in the near
future, will add tracking capabilities for muon measurements for IPZ = 0. A typical single track pT threshold
for di-muon pair analysis with the ALICE Muon Arm is pT > 1 GeV/c [108]. In addition, the muon arm is
equipped with an absorber, which reduces the uncorrelated background due to misidentified hadrons in such
studies. Moreover, it is possible to install an additional vertexing instrumentation near the interaction point
for IPZ = −5 m. Such a vertex detector would improve the precision of Drell-Yan measurements by removing
the background muons from light-hadron and charm/bottom-hadron decays. Indeed, for IPZ = −5 m, the
acceptance of the MFT does not match that of the spectrometer.

To quantify the STSA, we use the amplitude of the spin-correlated azimuthal modulation of the produced
particles AN . We consider the following approach to the AN measurement with di-muon pairs. First, a mi-
crovertexing detector will allow to remove the correlated background from charm and bottom hadron decays.
Thanks to the boost effect, their decay vertex is well separated from the primary collision point and c→ µ and
b→ µ will be identified and then removed from the pairs used to construct the invariant mass distribution. For
the statistical precision evaluation, we assume that the yields σ↑, σ↓ are measured separately with a standard
invariant mass approach used in high energy experiments for quarkonium studies. We construct an invariant
mass spectrum of all di-muon pairs (often called foreground) which contains both signal of interest (J/ψ, Υ,
DY) and random pairs (combinatorial background, B). The background yield B is evaluated with a like sign
technique: by taking a sum of mass distributions for µ+µ+ and µ−µ−, or a geometric mean of like-sign pair
yields (2

√
Nµ+µ+ Nµ−µ−). Finally, we subtract the background from the foreground to get the signal yield for

a given target polarisation in a given kinematical domain. PHENIX used such an approach in J/ψ AN mea-
surement [12] and their study confirmed that the like-sign pairs represent well the yield and polarisation of
the uncorrelated background. The statistical uncertainty δσ on the σ↑, σ↓ is thus given by δσ =

√
σ + 2B, and

the statistical uncertainty on AN reads δAN
= 2

P(σ↓+σ↑)2

√
(δσ↑σ↓)2 + (δσ↓σ↑)2. The factor 2B in δσ definition

accounts for the statistical uncertainty from the combinatorial background subtraction in the AN evaluation.
This approach assumes that the luminosities for each polarisation configuration are the same; if not, then the
σ↑, σ↓ need to be corrected for the relative luminosity differences. Similarly, we consider here that the sys-
tematic effects (like detector acceptance) are the same for σ↑ and σ↓, and will cancel out in the ratio. If they
are not, this should be accounted for.

3.2 Yields and kinematical range for the AN measurements with a LHCb-like detector

The statistical precision of quarkonium and Drell-Yan measurements with a LHCb-like detector was obtained
with realistic p + p simulations at

√
s = 115 GeV of correlated and uncorrelated background [34]. First, the

invariant mass spectrum of all µ+µ− pairs (MAll) is computed, which includes the signal (correlated pairs),
the correlated background (mainly muon pairs from semileptonic decays of charmed and bottom hadrons)



6

and the so-called combinatorial background (uncorrelated, randomly combined muon pairs in the analysis).
We applied a single-muon pT threshold of pT > 1.2 GeV/c to reduce the background. We estimated the
invariant-mass distribution of the uncorrelated background with the like-sign technique and then subtracted
it from MAll to account for the statistical uncertainty owing to the background fluctuations. Figure 1 shows
examples of the resulting invariant-mass distributions of the correlated µ+µ− pairs for three rapidity bins:
2 < yLab

µ+µ− < 3, 3 < yLab
µ+µ− < 4 and 4 < yLab

µ+µ− < 5 for a LHCb-like detector. In addition to the Drell-Yan and
quarkonium studies, the double-J/ψ production is of interest because it gives access to the kT evolution of
the gluon Sivers function. The double J/ψ rates are calculated within LHCb-like acceptance [32] assuming a
negligible background (which is an acceptable approximation given the background level observed for single
J/ψ [34]). Table 1 & 2 summarises the expected J/ψ, double J/ψ, Υand Drell-Yan yields for a single data
taking year for Lint = 10 fb−1.
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Fig. 1: Invariant mass distribution of the correlated µ+µ− pairs originating from Drell-Yan, cc and bb produc-
tion for a LHCb-like detector. The uncorrelated background is estimated with the like-sign method and then
subtracted from the overall simulated µ+µ− mass spectrum.

2 < yLab
µ+µ− < 3 3 < yLab

µ+µ− < 4 4 < yLab
µ+µ− < 5

J/ψ 1.69 · 107 1.04 · 108 1.01 · 108

3 < yLab
µ+µ− < 4 4 < yLab

µ+µ− < 5 3 < yLab
µ+µ− < 5

Υ(1S ) 4.85 · 104 8.85 · 104 1.37 · 105

Υ(2S ) 9.57 · 103 1.85 · 104 2.81 · 104

Υ(3S ) 4.35 · 103 8.77 · 103 1.31 · 104

2 < yLab < 5

double J/ψ 780

Table 1: J/ψ, Υ and double J/ψ yields expected with a LHCb-like detector per LHC year with a 7 TeV proton
beam on a proton target assuming Lint = 10 fb−1.

Such an experimental set-up offers a unique kinematic coverage, which allows one to probe a wide range
of the momentum fraction x2

2. Figure 2 (left panel) shows the range in the transverse mass mT vs. x2 that is

2 The momentum fractions of the partons x1, x2 are computed with a simplified 2 → 1 kinematics such that x1 = eymT /
√

s
and x2 = e−ymT /

√
s with m2

T = m2 + p2
T
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2 < yLab
µ+µ− < 3 3 < yLab

µ+µ− < 4 4 < yLab
µ+µ− < 5

Drell-Yan yield 4.32 · 105 9.32 · 105 4.98 · 105

Like-sign pairs yield 5.84 · 105 1.86 · 107 4.53 · 106

Signal-to-Background ratio 0.74 0.05 0.11

Table 2: Drell-Yan yields for 4 < Mµ+µ− < 9 GeV/c2 expected with a LHCb-like detector per LHC year with
a 7 TeV proton beam on a proton target assuming Lint = 10 fb−1.

available with the J/ψ, Υ and B and D-meson measurements. Since these are gluon-sensitive probes, they give
an unprecedented access to the gluon dynamics over a broad range of 0.02 < x2 < 1. Figure 2 (right panel)
shows the corresponding kinematic coverage (mass vs. x2) for the Drell-Yan pairs with the yield information.
Any cell in gray contains at least 30 DY events.
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Fig. 2: Left panel: The range in the transverse mass mT vs. parton momentum fraction x2 accessible in
AFTER@LHC in p + p collisions at

√
sNN = 115 GeV with J/ψ, Υ and D-meson measurements. Right

panel: the x2 vs. Drell-Yan mass coverage. [Both are for a LHCb-like detector]

3.3 AN in p + p↑ collisions.

Inspired from the performance of the polarised gas HERMES target [52] (which successfully operated for
many years with an effective average transverse polarisation P ∼ 80%), we used P = 80% in the following
statistical precision projections.

Figure 3 shows our precision projections for J/ψ and Υ AN as a function of xF . The statistical power of
this measurement reflects the major strength of AFTER@LHC, namely an ideal acceptance with conventional
detectors and the large production rates for quarkonium states expected for a single year of data taking (106

Υ and 109 J/ψ). Such a study will only be limited by the systematic uncertainties, which cancel out to a large
extent in AN . Even for a fraction of the expected luminosity (Lint = 1 fb−1), AJ/ψ

N can be measured with a
per-mil precision. Moreover, the AΥ(nS )

N is a unique observable, which is virtually inaccessible elsewhere and
which can be measured with a few per cent accuracy with AFTER@LHC. This level of data quality will allow
one to study the size of the asymmetry, its shape and the xF dependence of quarkonium AN . Furthermore,
AFTER@LHC aims at measurements of AN for nearly all quarkonium states, including C-even χc,b and ηc,
and their associated production. These processes are sensitive to the gluon content of the colliding hadrons
which can then be measured with an outstanding precision.
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Fig. 3: Projections for Υ (left panel) and J/ψ (right panel) AN as a function of xF for AFTER@LHC with a
LHCb-like detector. For the J/ψ case, these are compared to existing data from PHENIX [12] in red.

Associated-production channels [13, 19, 23, 40, 103, 109, 110] are fundamental tools to access the Gluon
Sivers effect, and also probing the gluon TMD sector and their evolution [84, 111]. A few different processes
are potentially interesting in this context, for instance J/ψ − J/ψ , J/ψ − γ, γ − γ, Υ − γ. The J/ψ − J/ψ
production seems to be the most practical one since the yields are not too small [32] and the measurement is
relatively straightforward (compared, for instance, to direct γ studies). Figure 4 shows the AN for double J/ψ
production as a function of the pair x2 and the pair kT . We consider two scenarios for the analysis of AN as
a function of kT : one with a fixed kT bin width of 1 GeV/c (dkT = 1 GeV/c, red points) and four bins with
equal yields. Here, we model the kT dependence as a Gaussian distribution with the width σ = 2 GeV/c. The
x2-integrated AN will allow for the determination of the STSA with a few percent precision and the AN(kT )
gives access –for the first time– to the kT dependence of the gluon Sivers TMD up to kT ≈ 4 GeV/c.

ψdi-J/
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ψdi-J/

2
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 [GeV/c]
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/
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0
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0.6
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Stat. unc. projection
4 bins with equal yields

 = 1 GeV/cTdk

Fig. 4: Statistical projections for di-J/ψ AN as a function of xF and the pair pT with a LHCb-like detector.

As we mentioned in the previous section, Drell-Yan production is a unique probe of the Sivers effect for
the quarks. It is a subject of lively interest with many existing or planned experiments (COMPASS, STAR,
E1039). Table 3 shows a compilation of the relevant parameters of future or planned polarised DY experi-
ments. AFTER@LHC is capable of measuring the Drell-Yan AN in a broad kinematic range with exceptional
precision.

Figure 5 shows the statistical accuracy expected with a single data-taking year using a LHCb-like detector,
for the Drell-Yan pairs satisfying 4 < Mµ+µ− < 9 GeV/c2. The level of uncorrelated background drives the
statistical uncertainties of this measurement. We estimated the background with the robust and commonly
used like-sign technique, then we subtracted it from the Mµ+µ− distribution. As explained above, we also
assumed that the microvertexing detector allow one to remove the correlated background from charm and
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Experiment particles beam en-
ergy (GeV)

√
s (GeV) x↑ L (cm−2s−1) Peff F (cm−2s−1)

AFTER@LHCb p + p↑ 7000 115 0.05 ÷ 0.95 1 · 1033 80% 6.4 · 1032

AFTER@LHCb p+3He↑ 7000 115 0.05 ÷ 0.95 2.5 · 1032 23% 1.4 · 1031

AFTER@ALICEµ p + p↑ 7000 115 0.1 ÷ 0.3 2.5 · 1031 80% 1.6 · 1031

COMPASS
(CERN)

π± + p↑ 190 19 0.2 ÷ 0.3 2 · 1033 18% 6.5 · 1031

PHENIX/STAR
(RHIC)

p↑ + p↑ collider 510 0.05 ÷ 0.1 2 · 1032 50% 5.0 · 1031

E1039 (FNAL) p + p↑ 120 15 0.1 ÷ 0.45 4 · 1035 15% 9.0 · 1033

E1027 (FNAL) p↑ + p 120 15 0.35 ÷ 0.9 2 · 1035 60% 7.2 · 1034

NICA (JINR) p↑ + p collider 26 0.1 ÷ 0.8 1 · 1032 70% 4.9 · 1031

fsPHENIX
(RHIC)

p↑ + p↑ collider 200 0.1 ÷ 0.5 8 · 1031 60% 2.9 · 1031

fsPHENIX
(RHIC)

p↑ + p↑ collider 510 0.05 ÷ 0.6 6 · 1032 50% 1.5 · 1032

PANDA (GSI) p̄ + p↑ 15 5.5 0.2 ÷ 0.4 2 · 1032 20% 8.0 · 1030

Table 3: Compilation inspired from [17, 56] of the relevant parameters for the future or planned polarised
DY experiments. The effective polarisation (Peff ) is a beam polarisation (where relevant) or an average
polarisation times a (possible) dilution factor (for a gas target, similar to the one developed for HER-
MES [52, 112, 113]) or a target polarisation times a dilution factor (for the NH3 target used by COMPASS
and E1039). For AFTER@LHC the numbers correspond to a gas target. F is the (instantaneous) spin figure
of merit of the target defined as F = P2

eff
× L, with L being the instantaneous luminosity.

bottom pair decays. The AFTER@LHC projections are compared to a theory evaluation [35]. This theory
prediction based on SIDIS currently exhibit uncertainties much larger than our projected uncertainties, as
shown by this example. By delivering high-quality data over a wide kinematic range, AFTER@LHC will
thus probe the x↑ dependence of the ADY

N and constrain model calculations.

↑x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D
Y

N
A

0.3−

0.2−

0.1−

0

0.1

0.2

0.3
SIDIS 1(Sivers effect)

 < 3lab
µµ2 < y

 < 4lab
µµ3 < y

 < 5lab
µµ4 < y

2 < 9 GeV/cµµ4 < M
2dM = 1 GeV/c

 = 115 GeVs p+p

-1 = 10 fbppL

 = 0.8Peff. pol. 

Fig. 5: Statistical projections for the Drell-Yan AN measurement as a function of x↑ with a LHCb-like detector.
Note that the range in x↑ is limited by the bin sizes in y and M. We have checked that measurements can
probably be done with an accuracy of 5% up to x↑ ' 0.95 as expected from Fig. 2.

Since the statistical precision of ADY
N strongly depends on the level of uncorrelated background, such

a study can be carried out with lower integrated luminosity if the background is suppressed. The ALICE
forward muon arm provides such a possibility. On the one hand, the available integrated luminosity is limited
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by the ALICE data taking rate capabilities. An integrated luminosity of 0.25 fb−1 can be expected at best for
a single year of data taking. On the other, the absorber in front of its muon detector can potentially reduce the
background.

To check to which extent ADY
N can be studied with ALICE and if this deserves further in-depth inves-

tigations, we estimated the signal and background yields as follows. First, we assumed that the number of
uncorrelated pairs in the DY and charmonium measurements is proportional to the number of charged parti-
cles squared, N2

ch. To take into account the track reconstruction efficiency and the background suppression by
the ALICE absorber, we referred to ALICE measurements of the di-muon pairs at forward rapidities in pp
collisions at 8 TeV [108]. Since Drell-Yan pairs were not measured by ALICE yet, we turned to J/ψ→ µ+µ+

measurements. We calculated the number of uncorrelated pairs Nun under the J/ψ peak and the J/ψ yield and
we normalised them by the luminosity. Then, we used the scaling of charged track density with the collision
energy dNch/dη|η∼0 = 0.725s0.23 [114] to scale down the Nun to the level expected at

√
s = 115 GeV. Next,

we used the energy dependence of the J/ψ cross section as calculated in the FONLL (Fixed Order plus Next-
to-Leading Logarithms) framework to scale the J/ψ yield to the value expected at 115 GeV –admittedly this
is another approximation. We neglected the change of the shape of dNch/dη and dσJ/ψ/dy distributions with√

s for these first estimates. Finally, we assumed that the reconstruction efficiency for J/ψ and DY pairs was
similar and the ratio of observed DY to J/ψ pairs would be the same in ALICE and LHCb. We thus used the
correlated di-muon spectrum simulated for LHCb-like detector for 3 < yLab

µ+µ− < 4 and scale it to match the
J/ψ yield in the simulation to that expected in ALICE at 115 GeV. Similarly, we normalised the uncorrelated
background under the J/ψ peak in the simulations to the Nun estimated for ALICE in a fixed target mode. As a
results, we obtained distributions of DY, cc→ µ+µ−, bb→ µ+µ− and uncorrelated background pairs expected
in the measurements using the ALICE muon arm.

Note that we implicitly assumed the target location to be at z = 0, which is not completely coherent
with the location of a polarised target. We nevertheless believe this to be sufficient for such a prospective
study. Figure 6 shows the projections for AN measured with the ALICE-like acceptance of 3 < yLab

µ+µ− < 4.
The uncertainties are sizeable but there is room for improvement if tracking and vertex detectors before the
absorber are used to reject muons from π, K meson and beauty and charm hadrons decays.

↑x
0.1− 0 0.1 0.2 0.3 0.4 0.5 0.6

D
Y

N
A

0.3−

0.2−

0.1−

0

0.1

0.2

0.3

Stat. unc. projection

 = 115 GeVs p+p -1 = 0.25 fbppL

 = 0.8Peff. pol. 

Fig. 6: Fast statistical projections for Drell-Yan AN as a function of x↑ with a ALICE-like detector. See text
for details.

3.4 Accessing the quark Sivers function in a polarised neutron: p+3He↑ collisions.

AFTER@LHC with a gas target offers a unique opportunity for studies of STSA in polarised p+3He↑ colli-
sions. Such reactions give access to polarised neutrons and thus to the Sivers functions in a neutron which can
shed some light on its isospin dependence. Figures 7 and 8 show the statistical-uncertainty predictions for DY
and quarkonium AN measurements. In the case of 3He↑, a polarisation of P = 70% can be achieved [112, 113].
However, the effective polarisation, Peff , is diluted by a factor of 3 since only the neutron is polarised in the
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3He↑. In addition, the combinatorial background is proportional to the number of binary nucleon-nucleon col-
lisions Ncoll, thus the background increases by a factor Ncoll ≈

√
3. An additional isospin factor of 9/6 for DY

studies is included. The available integrated luminosity of 2.5 fb−1 will allow for an exploratory measurement
for DY production and precision study for J/ψ AN .
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 = 115 GeVs ↑He3+p
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 = 0.7/3Peff. pol. 

Fig. 7: Statistical projections for Drell-Yan AN as a function of x↑ in p+3He↑ collisions at
√

s = 115 GeV.
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Fig. 8: Statistical projections for J/ψ and Υ AN as a function of xF in p+3He↑ collisions at
√

s = 115 GeV,
compared to existing PHENIX data with polarised protons [12].

4 Conclusions

We have presented prospects and sensitivity studies for measurements of the quarkonia and Drell-Yan
single transverse spin asymmetry which could be achieved with a fixed-target experiment at the LHC,
AFTER@LHC, with a polarised gas target. Owing to its orginal acceptance, high target polarisation and large
luminosities, AFTER@LHC can deliver a set of unparalleled, high-quality data that will allow for in-depth
studies of the gluon and quark Sivers functions and of the 3-parton collinear twist-3 correlators.

The AN for J/ψ, Υ, C-even quarkonium states and various associated-production channels can be mea-
sured with unprecedented precision. The latter will give access for the first time to the transverse momentum
depedence of the gluon Sivers effect. Such studies, along with those of the STSAs for open charm and beauty,
make AFTER@LHC the best place to advance –in a close future– our knowledge of gluon and quark dynam-
ics in a nucleon and of how they bind together to produce its observed spin 1/2.
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