3,900 research outputs found

    The Einstein Redshift in White Dwarfs

    Get PDF
    Low-dispersion radial velocities of 53 white dwarfs have been measured on Palomar spectrograms. Table 1 contains the type, velocity, space-motion components, photometrically deduced temperature and radius, for each star. Table 4 contains 39 additional radial velocities of very low weight. A few members of wide binary systems and 6 white dwarfs in the Hyades provide direct measures of the Einstein gravitational redshift, with a mean value of +51 km/sec. Omitting the very-high-velocity star LP9-231, there are 37 DA stars, with a mean K-term (expansion velocity) of +65.6 km/sec. If the Hyades stars are omitted, the mean K term is +62.5 km/sec. A number of white dwarfs are members of the high-velocity population. Systematic wavelength shifts of He i lines in DB stars make their velocities more negative than those of DA stars; similar negative shifts may exist for metallic lines. The temperature scale is obtained from colors and, combined with luminosities, gives radii. The broad distribution of radii and redshifts is shown in Figure 2, and median values are derived. The median radial velocity for 37 DA stars is +58 km/sec, and the median radius 0.0107 R_⊙; the redshift and radius give a mass of 0.98 M_⊙. However, this value is almost certainly too high, if we expect accordance with the theoretical mass-radius relation. The theoretical M-R relation of a zero-temperature degenerate star predicts a redshift, for given mass, for various compositions. Two corrections could bring the theoretically expected redshifts into agreement with the observations. Either a systematic change in luminosity, ΔM_v of +0.25 mag, or a reciprocal temperature change of Δθ = —0.03, reduces the median radius to 0.0093 R_⊙. The mass derived from the redshift is then 0.86 M_⊙. These values are in accordance with the Hamada-Salpeter mass-radius relation, if the composition in the interior is pure helium. A carbon or magnesium interior also gives a radius not too different from the colorimetric radius. An iron core gives a mass of 0.73 M_⊙, but a radius of 0.008 R_⊙, sufficiently smaller to require substantial changes in the temperature scale. The mass now derived from the radial velocities is higher than that previously found from radii only and closer to the Chandrasekhar limit

    Preliminary report on IUE spectra of the Crab Nebula

    Get PDF
    The Crab Nebula is marginally observable with the IUE. Observations of the optically brightest filamentary regions, made with IUE in August 1979, show the C IV lambda 1549, He II lambda 1640, and C III lambda 1909 emission lines. The intensities of these lines were compared with the visual wavelength data. It appears that carbon is not overabundant in the Crab; carbon/oxygen is approximately normal and oxygen is slightly scarcer than normal as a fraction of the total mass

    Possible Observational Criteria for Distinguishing Brown Dwarfs from Planets

    Get PDF
    The difference in formation process between binary stars and planetary systems is reflected in their composition as well as their orbital architecture, particularly orbital eccentricity as a function of orbital period. It is suggested here that this difference can be used as an observational criterion to distinguish between brown dwarfs and planets. Application of the orbital criterion suggests that with three possible exceptions, all of the recently-discovered substellar companions discovered to date may be brown dwarfs and not planets. These criterion may be used as a guide for interpretation of the nature of sub-stellar mass companions to stars in the future.Comment: LaTeX, 11 pages including 2 figures, accepted for publication in the Astrophysical Journal Letter

    A Chandra Search for Coronal X Rays from the Cool White Dwarf GD 356

    Full text link
    We report observations with the Chandra X-ray Observatory of the single, cool, magnetic white dwarf GD 356. For consistent comparison with other X-ray observations of single white dwarfs, we also re-analyzed archival ROSAT data for GD 356 (GJ 1205), G 99-47 (GR 290 = V1201 Ori), GD 90, G 195-19 (EG250 = GJ 339.1), and WD 2316+123 and archival Chandra data for LHS 1038 (GJ 1004) and GD 358 (V777 Her). Our Chandra observation detected no X rays from GD 356, setting the most restrictive upper limit to the X-ray luminosity from any cool white dwarf -- L_{X} < 6.0 x 10^{25} ergs/s, at 99.7% confidence, for a 1-keV thermal-bremsstrahlung spectrum. The corresponding limit to the electron density is n_{0} < 4.4 x 10^{11} cm^{-3}. Our re-analysis of the archival data confirmed the non-detections reported by the original investigators. We discuss the implications of our and prior observations on models for coronal emission from white dwarfs. For magnetic white dwarfs, we emphasize the more stringent constraints imposed by cyclotron radiation. In addition, we describe (in an appendix) a statistical methodology for detecting a source and for constraining the strength of a source, which applies even when the number of source or background events is small.Comment: 27 pages, 4 figures, submitted to the Astrophysical Journa

    Nurses\u27 Alumnae Association Bulletin - Volume 2 Number 2

    Get PDF
    Coming Events Come On, \u2732 Ballot for Officers Hospital News Legislation Scholarship Fund Notes Refresher Course Correspondence Use of Heparin in Modern Treatment The Jefferson Medical College Library Nursing School Education Action - Camera - Seniors Degrees Received Engagements Weddings Births Deaths Attention Alumnae Bulletin Progress Of Special Interest Army Assignments Organized Staff Meeting

    Non-stationary Rayleigh-Taylor instability in supernovae ejecta

    Get PDF
    The Rayleigh-Taylor instability plays an important role in the dynamics of several astronomical objects, in particular, in supernovae (SN) evolution. In this paper we develop an analytical approach to study the stability analysis of spherical expansion of the SN ejecta by using a special transformation in the co-moving coordinate frame. We first study a non-stationary spherical expansion of a gas shell under the pressure of a central source. Then we analyze its stability with respect to a no radial, non spherically symmetric perturbation of the of the shell. We consider the case where the polytropic constant of the SN shell is γ=5/3\gamma=5/3 and we examine the evolution of a arbitrary shell perturbation. The dispersion relation is derived. The growth rate of the perturbation is found and its temporal and spatial evolution is discussed. The stability domain depends on the ejecta shell thickness, its acceleration, and the perturbation wavelength.Comment: 16 page

    Molecular Aspects of Secretory Granule Exocytosis by Neurons and Endocrine Cells

    Get PDF
    Neuronal communication and endocrine signaling are fundamental for integrating the function of tissues and cells in the body. Hormones released by endocrine cells are transported to the target cells through the circulation. By contrast, transmitter release from neurons occurs at specialized intercellular junctions, the synapses. Nevertheless, the mechanisms by which signal molecules are synthesized, stored, and eventually secreted by neurons and endocrine cells are very similar. Neurons and endocrine cells have in common two different types of secretory organelles, indicating the presence of two distinct secretory pathways. The synaptic vesicles of neurons contain excitatory or inhibitory neurotransmitters, whereas the secretory granules (also referred to as dense core vesicles, because of their electron dense content) are filled with neuropeptides and amines. In endocrine cells, peptide hormones and amines predominate in secretory granules. The function and content of vesicles, which share antigens with synaptic vesicles, are unknown for most endocrine cells. However, in B cells of the pancreatic islet, these vesicles contain GABA, which may be involved in intrainsular signaling.' Exocytosis of both synaptic vesicles and secretory granules is controlled by cytoplasmic calcium. However, the precise mechanisms of the subsequent steps, such as docking of vesicles and fusion of their membranes with the plasma membrane, are still incompletely understood. This contribution summarizes recent observations that elucidate components in neurons and endocrine cells involved in exocytosis. Emphasis is put on the intracellular aspects of the release of secretory granules that recently have been analyzed in detail

    A New WIMP Population in the Solar System and New Signals for Dark-Matter Detectors

    Full text link
    We describe in detail how perturbations due to the planets can cause a sub-population of WIMPs captured by scattering in surface layers of the Sun to evolve to have orbits which no longer intersect the Sun. We argue that such WIMPs, if their orbit has a semi-major axis less than 1/2 of Jupiter's, can persist in the solar system for cosmological timescales. This leads to a new, previously unanticipated WIMP population intersecting the Earth's orbit. The WIMP-nucleon cross sections required for this population to be significant are precisely those in the range predicted for SUSY dark matter, lying near the present limits obtained by direct underground dark matter searches using cyrogenic detectors. Thus, if a WIMP signal is observed in the next generation of detectors, a potentially measurable signal due to this new population must exist. This signal, lying in the keV range for Germanium detectors, would be complementary to that of galactic halo WIMPs. A comparison of event rates, anisotropies, and annual modulations would not only yield additional confirmation that any claimed signal is indeed WIMP-based, but would also allow one to gain information on the nature of the underlying dark matter model.Comment: Revtex, 37 pages including 6 figures, accepted by Phys. Rev D. (version to be published, including changes made in response to referees reports
    corecore