162 research outputs found

    CDTI: Crew Function Assessment

    Get PDF
    Man machine interaction often requires the operator to perform a sterotyped scan of instruments to monitor and/or control a system. Situations in which this type of behavior exists, such as instrument flight, scan pattern has been shown to be altered by imposition of simultaneous verbal tasks. The relationship between pilot visual scan of instruments and mental workload was described. A verbal loading task of varying difficulty caused pilots to stare at the primary instrument as the difficulty increased and to shed looks at instruments of less importance. The verbal loading task affected rank ordering of scanning sequences. The behavior of pilots with widely varying skill levels suggested that these effects occur most strongly at lower skill levels and are less apparent at high skill levels. Graphical interpretation of the hypothetical relationship between skill, workload, and performance is introduced and modeling results are presented to support this interpretation

    Visual scanning behavior and pilot workload

    Get PDF
    An experimental paradigm and a set of results which demonstrate a relationship between the level of performance on a skilled man-machine control task, the skill of the operator, the level of mental difficulty induced by an additional task imposed on the basic control task, and visual scanning performance. During a constant, simulated piloting task, visual scanning of instruments was found to vary as a function of the level of difficulty of a verbal mental loading task. The average dwell time of each fixation on the pilot's primary instrument increased as a function of the estimated skill level of the pilots, with novices being affected by the loading task much more than the experts. The results suggest that visual scanning of instruments in a controlled task may be an indicator of both workload and skill

    Visual scanning behavior and pilot workload

    Get PDF
    Sophisticated man machine interaction often requires the human operator to perform a stereotyped scan of various instruments in order to monitor and/or control a system. For situations in which this type of stereotyped behavior exists, such as certain phases of instrument flight, scan pattern was shown to be altered by the imposition of simultaneous verbal tasks. A study designed to examine the relationship between pilot visual scan of instruments and mental workload is described. It was found that a verbal loading task of varying difficulty causes pilots to stare at the primary instrument as the difficulty increases and to shed looks at instruments of less importance. The verbal loading task also affected the rank ordering of scanning sequences. By examining the behavior of pilots with widely varying skill levels, it was suggested that these effects occur most strongly at lower skill levels and are less apparent at high skill levels. A graphical interpretation of the hypothetical relationship between skill, workload, and performance is introduced and modelling results are presented to support this interpretation

    Entropy, instrument scan and pilot workload

    Get PDF
    Correlation and information theory which analyze the relationships between mental loading and visual scanpath of aircraft pilots are described. The relationship between skill, performance, mental workload, and visual scanning behavior are investigated. The experimental method required pilots to maintain a general aviation flight simulator on a straight and level, constant sensitivity, Instrument Landing System (ILS) course with a low level of turbulence. An additional periodic verbal task whose difficulty increased with frequency was used to increment the subject's mental workload. The subject's looppoint on the instrument panel during each ten minute run was computed via a TV oculometer and stored. Several pilots ranging in skill from novices to test pilots took part in the experiment. Analysis of the periodicity of the subject's instrument scan was accomplished by means of correlation techniques. For skilled pilots, the autocorrelation of instrument/dwell times sequences showed the same periodicity as the verbal task. The ability to multiplex simultaneous tasks increases with skill. Thus autocorrelation provides a way of evaluating the operator's skill level

    FPGA Based Five-Phase Sinusoidal PWM Generator

    Get PDF
    Multiphase machine has became popular in many rotational drive applications due to its reliability, high efficiency and high quality of waveforms. Moreover, this machine (e.g. 5-phase induction machine) can provide more options for selecting the most optimum voltage vector since the number of switching devices of the inverter increases that can enhance torque capability and improve dynamic performances. However, the great advantageous offered cannot be realized if the switching and control strategy performed at very low sampling frequency which does not guarantee for the multiphase drive to operate at optimum operations. This paper presents the realization of fivephase sinusoidal PWM signal generator at fast sampling frequency using one-chip programmable gate array (FPGA). It can be shown that the generation of sinusoidal PWM using FPGA can perform the switching frequency of the inverter at 40 kHz switching frequency that may raise potential for excellent drive performances

    Periodic perturbation method for controlling chaos for a positive output DC-DC luo converter

    Get PDF
    Abstract: A simple, non-feedback method of controlling chaos is implemented for a DC-DC converter. The weak periodic perturbation (WPP) is the control technique applied to stabilize an unstable orbit in a current-mode controlled Positive Output Luo (POL) DC-DC converter operating in a chaotic regime. With WPP, the operation of the converter is limited to stable period-1 orbit that exists in the original chaotic attractor. The proposed control strategy is implemented using simulations and the results are verified with hardware setup. The experimental results of the converter with WPP control are presented which shows the effectiveness of the control strategy

    Electrodes' Configuration Influences the Agreement between Surface EMG and B-Mode Ultrasound Detection of Motor Unit Fasciculation

    Get PDF
    Muscle fasciculations, resulting from the spontaneous activation of motor neurons, may be associated with neurological disorders, and are often assessed with intramuscular electromyography (EMG). Recently, however, both ultrasound (US) imaging and multichannel surface EMG have been shown to be more sensitive to fasciculations. In this study we combined these two techniques to compare their detection sensitivity to fasciculations occurring in different muscle regions and to investigate the effect of EMG electrodes' configuration on their agreement. Monopolar surface EMGs were collected from medial gastrocnemius and soleus with an array of 32 electrodes (10 mm Inter-Electrode Distance, IED) simultaneously with b-mode US images detected alongside either proximal, central or distal electrodes groups. Fasciculation potentials (FP) were identified from single differential EMGs with 10 mm (SD1), 20 mm (SD2) and 30 mm (SD3) IEDs, and fasciculation events (FE) from US image sequences. The number, location, and size of FEs and FPs in 10 healthy participants were analyzed. Overall, the two techniques showed similar sensitivities to muscle fasciculations. US was equally sensitive to FE occurring in the proximal and distal calf regions, while the number of FP revealed by EMG increased significantly with the IED and was larger distally, where the depth of FE decreased. The agreement between the two techniques was relatively low, with a percentage of fasciculation classified as common ranging from 22% for the smallest IED to 68% for the largest IED. The relevant number of events uniquely detected by the two techniques is discussed in terms of different spatial sensitivities of EMG and US, which suggest that a combination of US-EMG is likely to maximise the sensitivity to muscle fasciculations

    Seizure evoked regulation of LIM-HD genes and co-factors in the postnatal and adult hippocampus

    Get PDF
    The LIM-homeodomain (LIM-HD) family of transcription factors is well known for its functions during several developmental processes including cell fate specification, cell migration and axon guidance, and its members play fundamental roles in hippocampal development. The hippocampus is a structure that displays striking activity dependent plasticity. We examined whether LIM-HD genes and their co-factors are regulated during kainic acid induced seizure in the adult rat hippocampus as well as in early postnatal rats, when the hippocampal circuitry is not fully developed. We report a distinct and field-specific regulation of LIM-HD genes Lhx1, Lhx2, and Lhx9, LIM-only gene Lmo4, and cofactor Clim1a in the adult hippocampus after seizure induction. In contrast none of these genes displayed altered levels upon induction of seizure in postnatal animals. Our results provide evidence of temporal and spatial seizure mediated regulation of LIM-HD family members and suggest that LIM-HD gene function may be involved in activity dependent plasticity in the adult hippocampus

    Battery State-of-Charge Estimation with Extended Kalman-Filter using Third-Order Thevenin Model

    Get PDF
    Lithium-ion battery has become the mainstream energy storage element of the electric vehicle. One of the challenges in electric vehicle development is the state-of-charge estimation of battery. Accurate estimation of state-of-charge is vital to indicate the remaining capacity of the battery and it will eventually maximize the battery performance and ensures the safe operation of the battery. This paper studied on the application of extended Kalman-filter and third order Thevenin equivalent circuit model in state-of-charge estimation of lithium ferro phosphate battery. Random test and pulse discharge test are conducted to obtain the accurate battery model. The simulation and experimental results are compared to validate the proposed state-of-charge estimation method

    Enhanced Performance of DTC-DSC of Induction Machine utilizing 3-Level Cascade H-Bridge Multilevel Inverter

    Get PDF
    The paper presents a new 3L DTC-DSC scheme for induction motor driver by selecting proper voltage vector for medium and high application. In conventional 3L DTC two different voltage vectors are assigned to vary flux for low speed, medium speed and high speed applications. This paper purposes a scheme for low speed operation of induction machines by using the same technique as conventional 3L DTC. However for a high speed operation, only a single voltage vector is applied thus resulting dodecagon flux locus.The new scheme also improves the torque capabalities and the dynamic of torque performances
    • …
    corecore