190 research outputs found
Investigation of a pulsed electrothermal thruster system
The performance of an ablative wall Pulsed Electrothermal (PET) thruster is accurately characterized on a calibrated thrust stand, using polyethylene propellant. The thruster is tested for four configurations of capillary length and pulse length. The exhaust velocity is determined with twin time-of-flight photodiode stagnation probes, and the ablated mass is measured from the loss over ten shots. Based on the measured thrust impulse and the ablated mass, the specific impulse varies from 1000 to 1750 seconds. The thrust to power varies from .05 N/kW (quasi-steady mode) to .10 N/kW (unsteady mode). The thruster efficiency varies from .56 at 1000 seconds to .42 at 1750 seconds. A conceptual design is presented for a 40 kW PET propulsion system. The point design system performance is .62 system efficiency at 1000 seconds specific impulse. The system's reliability is enhanced by incorporating 20, 20 kW thruster modules which are fired in pairs. The thruster design is non-ablative, and uses water propellant, from a central storage tank, injected through the cathode
Pulsed electrothermal thruster
A plasma electrothermal thruster includes a capillary passage in which a plasma discharge is formed and directed out of an open end of the passage into a supersonic nozzle. Liquid supplied to the capillary passage becomes partially atomized to cool a confining surface of the passage. The plasma discharge is formed as the atomized liquid flows out of the open end into a supersonic equilibrium nozzle. The discharge can have a duration greater than the two way travel time of acoustic energy in the capillary to cause the plasma to flow continuously through the nozzle during the time of the discharge pulse
Laser-driven shock acceleration of monoenergetic ion beams
We show that monoenergetic ion beams can be accelerated by moderate Mach
number collisionless, electrostatic shocks propagating in a long scale-length
exponentially decaying plasma profile. Strong plasma heating and density
steepening produced by an intense laser pulse near the critical density can
launch such shocks that propagate in the extended plasma at high velocities.
The generation of a monoenergetic ion beam is possible due to the small and
constant sheath electric field associated with the slowly decreasing density
profile. The conditions for the acceleration of high-quality, energetic ion
beams are identified through theory and multidimensional particle-in-cell
simulations. The scaling of the ion energy with laser intensity shows that it
is possible to generate MeV proton beams with state-of-the-art 100
TW class laser systems.Comment: 13 pages, 4 figures, accepted for publication in Physical Review
Letter
Very High Mach Number Electrostatic Shocks in Collisionless Plasmas
The kinetic theory of collisionless electrostatic shocks resulting from the
collision of plasma slabs with different temperatures and densities is
presented. The theoretical results are confirmed by self-consistent
particle-in-cell simulations, revealing the formation and stable propagation of
electrostatic shocks with very high Mach numbers (), well above the
predictions of the classical theories for electrostatic shocks.Comment: 6 pages, submitted to Phys. Rev. Let
Multiwavelength Study on Solar and Interplanetary Origins of the Strongest Geomagnetic Storm of Solar Cycle 23
We study the solar sources of an intense geomagnetic storm of solar cycle 23
that occurred on 20 November 2003, based on ground- and space-based
multiwavelength observations. The coronal mass ejections (CMEs) responsible for
the above geomagnetic storm originated from the super-active region NOAA 10501.
We investigate the H-alpha observations of the flare events made with a 15 cm
solar tower telescope at ARIES, Nainital, India. The propagation
characteristics of the CMEs have been derived from the three-dimensional images
of the solar wind (i.e., density and speed) obtained from the interplanetary
scintillation data, supplemented with other ground- and space-based
measurements. The TRACE, SXI and H-alpha observations revealed two successive
ejections (of speeds ~350 and ~100 km/s), originating from the same filament
channel, which were associated with two high speed CMEs (~1223 and ~1660 km/s,
respectively). These two ejections generated propagating fast shock waves
(i.e., fast drifting type II radio bursts) in the corona. The interaction of
these CMEs along the Sun-Earth line has led to the severity of the storm.
According to our investigation, the interplanetary medium consisted of two
merging magnetic clouds (MCs) that preserved their identity during their
propagation. These magnetic clouds made the interplanetary magnetic field (IMF)
southward for a long time, which reconnected with the geomagnetic field,
resulting the super-storm (Dst_peak=-472 nT) on the Earth.Comment: 24 pages, 16 figures, Accepted for publication in Solar Physic
Investigation of a repetitive pulsed electrothermal thruster
A pulsed electrothermal (PET) thruster with 1000:1 ratio nozzle is tested in a repetitive mode on water propellant. The thruster is driven by a 60J pulse forming network at repetition rates up to 10 Hz (600W). The pulse forming network has a .31 ohm impedance, well matched to the capillary discharge resistance of .40 ohm, and is directly coupled to the thruster electrodes without a switch. The discharge is initiated by high voltage breakdown, typically at 2500V, through the water vapor in the interelectrode gap. Water is injected as a jet through a .37 mm orifice on the thruster axis. Thruster voltage, current and impulse bit are recorded for several seconds at various power supply currents. Thruster to power ratio is typically T/P = .07 N/kW. Tank background pressure precludes direct measurement of exhaust velocity which is inferred from calculated pressure and temperature in the discharge to be about 14 km/sec. Efficiency, based on this velocity and measured T/P is .54 + or - .07. Thruster ablation is zero at the throat and becomes measurable further upstream, indicating that radiative ablation is occurring late in the pulse
Electromagnetic Response of Layered Superconductors with Broken Lattice Inversion Symmetry
We investigate the macroscopic effects of charge density waves (CDW) and
superconductivity in layered superconducting systems with broken lattice
inversion symmetry (allowing for piezoelectricity) such as two dimensional (2D)
transition metal dichalcogenides (TMD). We work with the low temperature time
dependent Ginzburg-Landau theory and study the coupling of lattice distortions
and low energy CDW collective modes to the superconducting order parameter in
the presence of electromagnetic fields. We show that superconductivity and
piezoelectricity can coexist in these singular metals. Furthermore, our study
indicates the nature of the quantum phase transition between a commensurate CDW
phase and the stripe phase that has been observed as a function of applied
pressure.Comment: 9 pages, 1 figure. Final version. Accepted in Phys.Rev.
Soft systems methodology: a context within a 50-year retrospective of OR/MS
Soft systems methodology (SSM) has been used in the practice of operations research and management science OR/MS) since the early 1970s. In the 1990s, it emerged as a viable academic discipline. Unfortunately, its proponents consider SSM and traditional systems thinking to be mutually exclusive. Despite the differences claimed by SSM proponents between the two, they have been complementary. An extensive sampling of the OR/MS literature over its entire lifetime demonstrates the richness with which the non-SSM literature has been addressing the very same issues as does SSM
3D pic simulations of collisionless shocks at lunar magnetic anomalies and their role in forming lunar swirls
The authors would like to thank the Science and Technology Facilities Council for fundamental physics and computing resources that were provided by funding from STFC’s Scientific Computing Department, and would like to thank the European Research Council (ERC 2010 AdG Grant 267841) and FCT (Portugal) grants SFRH/BD/75558/2010 for support.Investigation of the lunar crustal magnetic anomalies offers a comprehensive long-term data set of observations of small-scale magnetic fields and their interaction with the solar wind. In this paper a review of the observations of lunar mini-magnetospheres is compared quantifiably with theoretical kinetic-scale plasma physics and 3D particle-in-cell simulations. The aim of this paper is to provide a complete picture of all the aspects of the phenomena and to show how the observations from all the different and international missions interrelate. The analysis shows that the simulations are consistent with the formation of miniature (smaller than the ion Larmor orbit) collisionless shocks and miniature magnetospheric cavities, which has not been demonstrated previously. The simulations reproduce the finesse and form of the differential proton patterns that are believed to be responsible for the creation of both the "lunar swirls" and "dark lanes." Using a mature plasma physics code like OSIRIS allows us, for the first time, to make a side-by-side comparison between model and space observations. This is shown for all of the key plasma parameters observed to date by spacecraft, including the spectral imaging data of the lunar swirls. The analysis of miniature magnetic structures offers insight into multi-scale mechanisms and kinetic-scale aspects of planetary magnetospheres.Publisher PDFPeer reviewe
Mini-magnetospheres above the lunar surface and the formation of lunar swirls
In this paper we present in-situ satellite data, theory and laboratory
validation that show how small scale collisionless shocks and
mini-magnetospheres can form on the electron inertial scale length. The
resulting retardation and deflection of the solar wind ions could be
responsible for the unusual "lunar swirl" patterns seen on the surface of the
Moon.Comment: 5 pages, 5 figure
- …
