241 research outputs found

    Space dependent Fermi velocity in strained graphene

    Get PDF
    We resolve some apparent discrepancies between two different models for curved graphene: the one based on tight binding and elasticity theory, and the covariant approach based on quantum field theory in curved space. We demonstrate that strained or corrugated samples will have a space dependent Fermi velocity in either approach that can affect the interpretation of some experiments.Comment: Revised version as will appear in Phys. Rev. Let

    LANCL1 binds abscisic acid and stimulates glucose transport and mitochondrial respiration in muscle cells via the AMPK/PGC-1α/Sirt1 pathway

    Get PDF
    Objective: Abscisic acid (ABA) is a plant hormone also present and active in animals. In mammals, ABA regulates blood glucose levels by stimulating insulin-independent glucose uptake and metabolism in adipocytes and myocytes through its receptor LANCL2. The objective of this study was to investigate whether another member of the LANCL protein family, LANCL1, also behaves as an ABA receptor and, if so, which functional effects are mediated by LANCL1. Methods: ABA binding to human recombinant LANCL1 was explored by equilibrium-binding experiments with [3H]ABA, circular dichroism, and surface plasmon resonance. Rat L6 myoblasts overexpressing either LANCL1 or LANCL2, or silenced for the expression of both proteins, were used to investigate the basal and ABA-stimulated transport of a fluorescent glucose analog (NBDG) and the signaling pathway downstream of the LANCL proteins using Western blot and qPCR analysis. Finally, glucose tolerance and sensitivity to ABA were compared in LANCL2−/− and wild-type (WT) siblings. Results: Human recombinant LANCL1 binds ABA with a Kd between 1 and 10 μM, depending on the assay (i.e., in a concentration range that lies between the low and high-affinity ABA binding sites of LANCL2). In L6 myoblasts, LANCL1 and LANCL2 similarly, i) stimulate both basal and ABA-triggered NBDG uptake (4-fold), ii) activate the transcription and protein expression of the glucose transporters GLUT4 and GLUT1 (4-6-fold) and the signaling proteins AMPK/PGC-1α/Sirt1 (2-fold), iii) stimulate mitochondrial respiration (5-fold) and the expression of the skeletal muscle (SM) uncoupling proteins sarcolipin (3-fold) and UCP3 (12-fold). LANCL2−/− mice have a reduced glucose tolerance compared to WT. They spontaneously overexpress LANCL1 in the SM and respond to chronic ABA treatment (1 μg/kg body weight/day) with an improved glycemia response to glucose load and an increased SM transcription of GLUT4 and GLUT1 (20-fold) of the AMPK/PGC-1α/Sirt1 pathway and sarcolipin, UCP3, and NAMPT (4- to 6-fold). Conclusions: LANCL1 behaves as an ABA receptor with a somewhat lower affinity for ABA than LANCL2 but with overlapping effector functions: stimulating glucose uptake and the expression of muscle glucose transporters and mitochondrial uncoupling and respiration via the AMPK/PGC-1α/Sirt1 pathway. Receptor redundancy may have been advantageous in animal evolution, given the role of the ABA/LANCL system in the insulin-independent stimulation of cell glucose uptake and energy metabolism

    Bypass of mutagenic O 6 -Carboxymethylguanine DNA Adducts by Human Y- and B-Family Polymerases

    Get PDF
    The generation of chemical alkylating agents from nitrosation of glycine and bile acid conjugates in the gastrointestinal tract is hypothesized to initiate carcinogenesis. O6-carboxymethylguanine (O6-CMG) is a product of DNA alkylation derived from nitrosated glycine. Although the tendency of the structurally related adduct O6-methylguanine to code for the misincoporation of TTP during DNA replication is well-established, the impact of the presence of the O6-CMG adduct in a DNA template on the efficiency and fidelity of translesion DNA synthesis (TLS) by human DNA polymerases (Pols) has hitherto not been described. Herein, we characterize the ability of the four human TLS Pols η, ι, κ, and ζ and the replicative Pol δ to bypass O6-CMG in a prevalent mutational hot-spot for colon cancer. The results indicate that Pol η replicates past O6-CMG, incorporating dCMP or dAMP, whereas Pol κ incorporates dCMP only, and Pol ι incorporates primarily dTMP. Additionally, the subsequent extension step was carried out with high efficiency by TLS Pols η, κ, and ζ, while Pol ι was unable to extend from a terminal mismatch. These results provide a first basis of O6-CMG-promoted base misincorporation by Y- and B-family polymerases potentially leading to mutational signatures associated with colon cancer

    Fluid-structure interaction simulation of prosthetic aortic valves : comparison between immersed boundary and arbitrary Lagrangian-Eulerian techniques for the mesh representation

    Get PDF
    In recent years the role of FSI (fluid-structure interaction) simulations in the analysis of the fluid-mechanics of heart valves is becoming more and more important, being able to capture the interaction between the blood and both the surrounding biological tissues and the valve itself. When setting up an FSI simulation, several choices have to be made to select the most suitable approach for the case of interest: in particular, to simulate flexible leaflet cardiac valves, the type of discretization of the fluid domain is crucial, which can be described with an ALE (Arbitrary Lagrangian-Eulerian) or an Eulerian formulation. The majority of the reported 3D heart valve FSI simulations are performed with the Eulerian formulation, allowing for large deformations of the domains without compromising the quality of the fluid grid. Nevertheless, it is known that the ALE-FSI approach guarantees more accurate results at the interface between the solid and the fluid. The goal of this paper is to describe the same aortic valve model in the two cases, comparing the performances of an ALE-based FSI solution and an Eulerian-based FSI approach. After a first simplified 2D case, the aortic geometry was considered in a full 3D set-up. The model was kept as similar as possible in the two settings, to better compare the simulations' outcomes. Although for the 2D case the differences were unsubstantial, in our experience the performance of a full 3D ALE-FSI simulation was significantly limited by the technical problems and requirements inherent to the ALE formulation, mainly related to the mesh motion and deformation of the fluid domain. As a secondary outcome of this work, it is important to point out that the choice of the solver also influenced the reliability of the final results

    Perturbative instabilities in Horava gravity

    Full text link
    We investigate the scalar and tensor perturbations in Horava gravity, with and without detailed balance, around a flat background. Once both types of perturbations are taken into account, it is revealed that the theory is plagued by ghost-like scalar instabilities in the range of parameters which would render it power-counting renormalizable, that cannot be overcome by simple tricks such as analytic continuation. Implementing a consistent flow between the UV and IR limits seems thus more challenging than initially presumed, regardless of whether the theory approaches General Relativity at low energies or not. Even in the phenomenologically viable parameter space, the tensor sector leads to additional potential problems, such as fine-tunings and super-luminal propagation.Comment: 21 pages, version published at Class. Quant. Gra

    Computational Modeling-Based Discovery of Novel Classes of Anti-Inflammatory Drugs That Target Lanthionine Synthetase C-Like Protein 2

    Get PDF
    Background: Lanthionine synthetase component C-like protein 2 (LANCL2) is a member of the eukaryotic lanthionine synthetase component C-Like protein family involved in signal transduction and insulin sensitization. Recently, LANCL2 is a target for the binding and signaling of abscisic acid (ABA), a plant hormone with anti-diabetic and anti-inflammatory effects. Methodology/Principal Findings: The goal of this study was to determine the role of LANCL2 as a potential therapeutic target for developing novel drugs and nutraceuticals against inflammatory diseases. Previously, we performed homology modeling to construct a three-dimensional structure of LANCL2 using the crystal structure of lanthionine synthetase component C-like protein 1 (LANCL1) as a template. Using this model, structure-based virtual screening was performed using compounds from NCI (National Cancer Institute) Diversity Set II, ChemBridge, ZINC natural products, and FDAapproved drugs databases. Several potential ligands were identified using molecular docking. In order to validate the antiinflammatory efficacy of the top ranked compound (NSC61610) in the NCI Diversity Set II, a series of in vitro and pre-clinical efficacy studies were performed using a mouse model of dextran sodium sulfate (DSS)-induced colitis. Our findings showed that the lead compound, NSC61610, activated peroxisome proliferator-activated receptor gamma in a LANCL2- and adenylate cyclase/cAMP dependent manner in vitro and ameliorated experimental colitis by down-modulating colonic inflammatory gene expression and favoring regulatory T cell responses

    Thin accretion disk signatures of slowly rotating black holes in Ho\v{r}ava gravity

    Get PDF
    In the present work, we consider the possibility of observationally testing Ho\v{r}ava gravity by using the accretion disk properties around slowly rotating black holes of the Kehagias-Sfetsos solution in asymptotically flat spacetimes. The energy flux, temperature distribution, the emission spectrum as well as the energy conversion efficiency are obtained, and compared to the standard slowly rotating general relativistic Kerr solution. Comparing the mass accretion in a slowly rotating Kehagias-Sfetsos geometry in Ho\v{r}ava gravity with the one of a slowly rotating Kerr black hole, we verify that the intensity of the flux emerging from the disk surface is greater for the slowly rotating Kehagias-Sfetsos solution than for rotating black holes with the same geometrical mass and accretion rate. We also present the conversion efficiency of the accreting mass into radiation, and show that the rotating Kehagias-Sfetsos solution provides a much more efficient engine for the transformation of the accreting mass into radiation than the Kerr black holes. Thus, distinct signatures appear in the electromagnetic spectrum, leading to the possibility of directly testing Ho\v{r}ava gravity models by using astrophysical observations of the emission spectra from accretion disks.Comment: 12 pages, 15 figures. V2: 13 pages, clarifications and discussion added; version accepted for publication in Classical and Quantum Gravit

    PI3K/AKT is involved in mediating survival signals that rescue Ewing tumour cells from fibroblast growth factor 2-induced cell death

    Get PDF
    While in vitro studies had shown that fibroblast growth factor 2 (FGF2) can induce cell death in Ewing tumours, it remained unclear how Ewing tumour cells survive in vivo within a FGF2-rich microenvironment. Serum- and integrin-mediated survival signals were, therefore, studied in adherent monolayer and anchorage-independent colony cell cultures. In a panel of Ewing tumour cell lines, either adhesion to collagen or exposure to serum alone only had a minor protective effect against FGF2. However, both combined led to complete resistance to 5 ng ml−1 FGF2 in three of four FGF2-sensitive cell lines (RD-ES, RM-82 and WE-68), and to an increased survival as compared to other culture conditions in TC-71 cells. Inhibition studies with LY294002 demonstrated that the serum signal is mediated via the phosphoinositide 3-OH kinase/AKT pathway. Thus, Ewing tumour cells escape FGF2-induced cell death by modulating FGF2 signalling. The tumour microenvironment provides the necessary survival signals by integrin-mediated adhesion and soluble serum factor(s). These survival signals warrant further investigation as a potential resistance mechanism to other apoptosis-inducing agents in vivo

    Gender differences in disability after sickness absence with musculoskeletal disorders: five-year prospective study of 37,942 women and 26,307 men

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gender differences in the prevalence and occupational consequences of musculoskeletal disorders (MSDs) are consistently found in epidemiological studies. The study investigated whether gender differences also exist with respect to chronicity, measured as the rate of transition from sickness absence into permanent disability pension (DP).</p> <p>Methods</p> <p>Prospective national cohort study in Norway including all cases with a spell of sickness absence > eight weeks during 1997 certified with a MSD, 37,942 women and 26,307 men. The cohort was followed-up for five years with chronicity measured as granting of DP as the endpoint. The effect of gender was estimated in the full sample adjusting for sociodemographic factors and diagnostic distribution. Gender specific analyses were performed with the same explanatory variables. Finally, the gender difference was estimated for nine diagnostic subgroups.</p> <p>Results</p> <p>The crude rate of DP was 22% for women and 18% for men. After adjusting for all sociodemographic variables, a slightly higher female risk of DP remained. However, additional adjustment for diagnostic distribution removed the gender difference completely. Having children and working full time decreased the DP risk for both genders, whereas low socioeconomic status increased the risk similarly. There was a different age effect as more women obtained a DP below the age of 50. Increased female risk of chronicity remained for myalgia/fibromyalgia, back disorders and "other/unspecified" after relevant adjustments, whereas men with neck disorders were at higher risk of chronicity.</p> <p>Conclusions</p> <p>Women with MSDs had a moderately increased risk of chronicity compared to men, when including MSDs with a traumatic background. Possible explanations are lower income, a higher proportion belonging to diagnostic subgroups with poor prognosis, and a younger age of chronicity among women. When all sociodemographic and diagnostic variables were adjusted for, no gender difference remained, except for some diagnostic subgroups.</p
    • …
    corecore