63 research outputs found

    Nanobio Silver: Its Interactions with Peptides and Bacteria, and Its Uses in Medicine

    Full text link

    The origin and development of joints in the Boom Clay Formation (Rupelian) in Belgium

    No full text
    A system of natural, vertical and mutual perpendicular joints is described in the clay pits of the Rupelian Boom Clay in the Antwerp area of North Belgium. Joints are the dominant discontinuity surfaces in the clay outcrops. Neither the stress evolution of the clay during burial and uplift nor the regional tectonic history can explain the tensional jointing. It is suggested that the negative horizontal stresses required for the joint formation in clays are caused by shrinkage of the clay when the formation was located near the surface. The origin of the loss of pore fluid in a several tens of metres thick clay layers remains unknown. The joints in the Boom Clay are a scarce field example of the possibility of lateral contraction of a clay layer, without involving tectonics or burial/uplift as an origin. When such a jointed clay layer is buried again, the presence of the vertical joints might offer pathways for fluid migration through a relatively impermeable layer. A general relationship between a maximal depth beneath which no tensional joints can occur and the cohesion of the clay has been derived. In the case of the Boom Clay this limiting depth is around 40-50 m. The time of the joint formation in the outcrop area is most probably late Oligocene/early Miocene. The burial history of the clay at a particular location can be used as a predictive tool for the presence or absence of tensional joints.status: publishe

    The Cambrian to mid Devonian basin development and deformation history of Eastern Avalonia, east of the Midlands Microcraton: new data and a review

    No full text
    A review is given of recently published and new data on Avalonia east of the Midlands Microcraton. The three megasequences from Cambrian to mid Devonian described in Wales and Welsh Borderland are also present east of the Midlands Microcraton (Brabant Massif, Condroz, Ardennes, Remscheid and Ebbe inliers, Krefeld high). The three mega-sequences are caused by a tectonic driving mechanism and are explained by three different geodynamic contexts: an earlier phase with extensional basins or rifting and rather thick sequences, when Avalonia was still attached to Gondwana; a second phase with a shelf basin with moderately thin sequences when Avalonia was a separate continent and a later phase with a shelf or foreland basin development and thick sequences. Deformation of the megasequences 1 and 2 or 1 to 3 varies between areas. In Wales and the Lake District the Acadian phase is long-lived and active from early to mid Devonian. In the Ardennes inliers a deformation is active between the late Ordovician and the Silurian (Ardennian Phase), with a similar intensity as the core of the Brabant Massif, when present erosion levels are compared. The Brabant Massif is partly deformed by the long-lived Brabantian Phase from late Silurian till early mid Devonian. Both the Ardennes inliers and the Brabant Massif are not classic orogenic belts, only slate belts where no more than the epizone is reached at present erosion levels. Areas supposedly close to the microcraton or basement are nearly undeformed (SW Brabant Massif and central Condroz). A model of anticlockwise rotation of Avalonia of about 55° from Caradoc to Emsian is proposed to explain the deposition setting of megasequence 3 and the subsequent Acadian and Brabantian deformation. Immediately after the Avalonian microcontinent touched Baltica in Caradoc times it created a short-lived subduction magmatic event from The Wash to the Brabant Massif and soon after the magmatism ended a foreland basin developed. Possibly during and after that development a long-lived and slow compressional event occurred, leading to the deformation of the Anglo-Brabant Deformation Belt. In the early Devonian, contemporaneous with the shortening of the Anglo-Brabant Deformation Belt, extension occurred in the Rheno-Hercynian Zone, possibly caused by the same slow rotation of Avalonia. More evidence emerges that Avalonia cast of the Midlands Microcraton comprises not one but probably two terranes: the remnant of the palaeocontinent Avalonia, and what is called the palaeocontinent Far Eastern Avalonia; the latter is only occasionally observed in the few deep boreholes into the Heligoland-Pomerania Deformation Belt, in southern Denmark, NE Germany and NW Poland, with scant available indirect data in between indicating only Proterozoic basement and no Caledonian deformation. For Far Eastern Avalonia a similar palaeogeographical history is postulated as Avalonia, with rifting from Gondwana in Arenig or earlier times, collision with Baltica before the mid-Ashgill and deformation between the late Ordovician and latest Silurian. The Avalonia concept might need to be expanded to an 'Avalonian Terrane Assemblage' with cratonic cores and small short-lived oceans as in the Armorican Terrane Assemblage.status: publishe

    Volumetric matrix strain related to intraformational faulting in argillaceous sediments

    No full text
    <p>Soft-sediment deformation involves complex interactions between discrete fracturing and diffuse bulk strain, described in terms of volume change and shear strain in a critical state mechanics framework. This study reports on a mesoscale normal fault zone, intraformational in Oligocene argillaceous sediments from the Boom Formation (Belgium), containing several metre-scale normal fault strands. They form either discrete fault planes or decimetre-wide shear zones with internal fabric. The faults have been subjected to microtectonic and petrophysical analysis. Small but significant changes occur in the porous network of the argillaceous matrix approaching a fault or shear zone, indicating compactional strain in both footwall and hanging wall. Internal compaction associated with faulting is put forward as a ductile–brittle feedback mechanism in the kinematics of intraformational fracture systems. Small differential stress induced by compaction and minor regional tectonic forces (differential uplift and tilt) and subsequent gravitational forces (downslope shear stress) induce small shear bands in nearly critically stressed weak mud. Shear banding is accompanied by layer-parallel shortening and bulk volume loss. This provides an additional extension of endogenous origin, accommodated by further deformation. This ductile–brittle feedback mechanism eventually leads to commonly observed intraformational collapse structures called polygonal fault systems. </p
    • …
    corecore