2,499 research outputs found
Presidential Succession and Delegation in Case of Disability
Memo issued four days after the Reagan assassination attempt.https://ir.lawnet.fordham.edu/twentyfifth_amendment_executive_materials/1003/thumbnail.jp
Nephronophthisis: a genetically diverse ciliopathy.
Nephronophthisis (NPHP) is an autosomal recessive cystic kidney disease and a leading genetic cause of established renal failure (ERF) in children and young adults. Early presenting symptoms in children with NPHP include polyuria, nocturia, or secondary enuresis, pointing to a urinary concentrating defect. Renal ultrasound typically shows normal kidney size with increased echogenicity and corticomedullary cysts. Importantly, NPHP is associated with extra renal manifestations in 10-15% of patients. The most frequent extrarenal association is retinal degeneration, leading to blindness. Increasingly, molecular genetic testing is being utilised to diagnose NPHP and avoid the need for a renal biopsy. In this paper, we discuss the latest understanding in the molecular and cellular pathogenesis of NPHP. We suggest an appropriate clinical management plan and screening programme for individuals with NPHP and their families
Trends in sexually transmitted infections in general practice 1990-2000: population based study using data from the UK general practice research database
Objective: To describe the contribution of primary care to the
diagnosis and management of sexually transmitted infections in
the United Kingdom, 1990-2000, in the context of increasing
incidence of infections in genitourinary medicine clinics.
Design: Population based study.
Setting: UK primary care.
Participants: Patients registered in the UK general practice
research database.
Main outcome measures: Incidence of diagnosed sexually
transmitted infections in primary care and estimation of the
proportion of major such infections diagnosed in primary care.
Results: An estimated 23.0% of chlamydia cases in women but
only 5.3% in men were diagnosed and treated in primary care
during 1998-2000, along with 49.2% cases of non-specific
urethritis and urethral discharge in men and 5.7% cases of
gonorrhoea in women and 2.9% in men. Rates of diagnosis in
primary care rose substantially in the late 1990s.
Conclusions: A substantial and increasing number of sexually
transmitted infections are diagnosed and treated in primary
care in the United Kingdom, with sex ratios differing from
those in genitourinary medicine clinics. Large numbers of men
are treated in primary care for presumptive sexually
transmitted infections
Comparison of Synovex-S® and two levels of Revalor-S® in heavy-weight Holstein steers
In two field trials, 434 Holstein steers
averaging 849 lbs were assigned randomly to
three single implant treatments: 1) Synovex-
S®, 2) Revalor®-S 120 (120 mg trenbolone
acetate (TBA) + 24 mg estradiol), and 3)
Revalor®-S 140 (140 mg TBA + 28 mg
estradiol). Revalor-implanted steers gained
.05 to .10 lb per day faster, but this improvement
was not statistically significant (P>.05).
Both Revalor-implanted groups produced
trimmer carcasses with less (P<.05) backfat
than Synovex steers. All other carcass
characteristics and beef sensory properties,
including taste panel evaluations of tenderness,
juiciness, and flavor, were not influenced by
implant used
Age of Barrier Canyon-style rock art constrained by cross-cutting relations and luminescence dating techniques
Rock art compels interest from both researchers and a broader public, inspiring many hypotheses about its cultural origin and meaning, but it is notoriously difficult to date numerically. Barrier Canyon-style (BCS) pictographs of the Colorado Plateau are among the most debated examples; hypotheses about its age span the entire Holocene epoch and previous attempts at direct radiocarbon dating have failed. We provide multiple age constraints through the use of cross-cutting relations and new and broadly applicable approaches in optically stimulated luminescence dating at the Great Gallery panel, the type section of BCS art in Canyonlands National Park, southeastern Utah. Alluvial chronostratigraphy constrains the burial and exhumation of the alcove containing the panel, and limits are also set by our related research dating both a rockfall that removed some figures and the rock’s exposure duration before that time. Results provide a maximum possible age, a minimum age, and an exposure time window for the creation of the Great Gallery panel, respectively. The only prior hypothesis not disproven is a late Archaic origin for BCS rock art, although our age result of A.D. ∼1–1100 coincides better with the transition to and rise of the subsequent Fremont culture. This chronology is for the type locality only, and variability in the age of other sites is likely. Nevertheless, results suggest that BCS rock art represents an artistic tradition that spanned cultures and the transition from foraging to farming in the region. Archaeology is focused upon material records, contextualized in time. Rock art is a record with the potential to provide unique insight into the dynamics and evolution of culture, but it generally lacks stratigraphic or chronologic context. Interpretation of the origin and meaning of rock art is indirect at best, or simply speculative. In the case of some pictographs, pigments may include or have enough accessory carbon for accelerator mass spectrometry (AMS) radiocarbon dating (1⇓⇓–4). In other special situations, such as caves, minimum age constraints have been obtained by various techniques of dating material that overlies or entombs rock art (5⇓–7). However, most rock art remains undatable and researchers rely upon stylistic comparison and indirect associations with artifacts at nearby sites (8, 9). The case in point for this study is arguably the most compelling and debated rock art in the United States—the Barrier Canyon style (BCS) of the Colorado Plateau. Previous attempts to derive an absolute chronology have failed and its age remains unknown, with widely ranging hypotheses that have remained untested until now. The continued development of dating techniques offers new possibilities for hypothesis testing. The optically stimulated luminescence (OSL) signals from mineral grains make it possible to date the deposition of most sediment that is exposed to a few seconds of full sunlight before burial, and its use in the earth and cultural sciences has greatly increased (10, 11). Among the latest applications of OSL are techniques dating the outer surfaces of rock clasts that have become shielded from light, including those with archaeological context (12⇓⇓–15). Recent work has furthermore used the “bleaching” profile of decreasing luminescence signal toward the surface of rock to estimate exposure time to sunlight (16, 17). Using these dating tools, we can constrain the age of rock art and gain new insight into past cultures and landscapes. Here, we synthesize results from three approaches to dating the type section of BCS art, the Great Gallery in Canyonlands National Park of southeastern Utah. Through dating the full alluvial stratigraphy and a rockfall event that both have incontrovertible cross-cutting relations with the rock art, and then by determining the exposure duration of a painted rock surface, we greatly narrow the window of time when the rock art was created. These approaches do not require direct sampling of rock art and have strong potential for application to other archaeological and surface processes research. Although our results are only for the type section of BCS art, and chronological variability should be expected for the style across the region, they suggest that BCS art coincides with the transition to agriculture in the northern Colorado Plateau and may not have been limited to a specific archaeological culture
Distinct firing properties of vasoactive intestinal peptide-expressing neurons in the suprachiasmatic nucleus
The suprachiasmatic nucleus (SCN) regulates daily rhythms in physiology and behavior. Previous studies suggest a critical role for neurons expressing vasoactive intestinal peptide (VIP) in coordinating rhythmicity and synchronization in the SCN. Here we examined the firing properties of VIP-expressing SCN neurons in acute brain slices. Active and passive membrane properties were measured in VIP and in non-VIP neurons during the day and at night. Current-clamp recordings revealed that both VIP and non-VIP neurons were spontaneously active, with higher firing rates during the day than at night. Average firing frequencies, however, were higher in VIP neurons (3.1 ± 0.2 Hz, day and 2.4 ± 0.2 Hz, night) than in non-VIP neurons (1.8 ± 0.2 Hz, day and 0.9 ± 0.2 Hz, night), both day and night. The waveforms of individual action potentials in VIP and non-VIP neurons were also distinct. Action potential durations (APD(50)) were shorter in VIP neurons (3.6 ± 0.1 ms, day and 2.9 ± 0.1 ms, night) than in non-VIP neurons (4.4 ± 0.3 ms, day and 3.5 ± 0.2 ms, night) throughout the light-dark cycle. In addition, after hyper polarization (AHP) amplitudes were larger in VIP neurons (21 ± 0.8 mV, day and 24.9 ± 0.9 mV, night) than in non-VIP neurons (17.2 ± 1.1 mV, day and 20.5 ± 1.2 mV, night) during the day and at night. Furthermore, significant day/night differences were observed in APD(50) and AHP amplitudes in both VIP and non-VIP SCN neurons, consistent with rhythmic changes in ionic conductances that contribute to shaping the firing properties of both cell types. The higher day and night firing rates of VIP neurons likely contribute to synchronizing electrical activity in the SCN
High-temperature performance of ferritic steels in fireside corrosion regimes: temperature and deposits
The paper reports high temperature resistance of ferritic steels in fireside corrosion regime in terms of temperature and deposits aggressiveness. Four candidate power plant steels: 15Mo3, T22, T23 and T91 were exposed under simulated air-fired combustion environment for 1000 h. The tests were conducted at 600, 650 and 700 °C according to deposit-recoat test method. Post-exposed samples were examined via dimensional metrology (the main route to quantify metal loss), and mass change data were recorded to perform the study of kinetic behavior at elevated temperatures. Microstructural investigations using ESEM-EDX were performed in order to investigate corrosion degradation and thickness of the scales. The ranking of the steels from most to the least damage was 15Mo3 > T22 > T23 > T91 in all three temperatures. The highest rate of corrosion in all temperatures occurred under the screening deposit
Functional modelling of a novel mutation in BBS5.
BACKGROUND: Bardet-Biedl syndrome (BBS) is an autosomal recessive ciliopathy disorder with 18 known causative genes (BBS1-18). The primary clinical features are renal abnormalities, rod-cone dystrophy, post-axial polydactyly, learning difficulties, obesity and male hypogonadism. RESULTS: We describe the clinical phenotype in three Saudi siblings in whom we have identified a novel mutation in exon 12 of BBS5 (c.966dupT; p.Ala323CysfsX57). This single nucleotide duplication creates a frame shift results in a predicted elongated peptide. Translation blocking Morpholino oligonucleotides were used to create zebrafish bbs5 morphants. Morphants displayed retinal layering defects, abnormal cardiac looping and dilated, cystic pronephric ducts with reduced cilia expression. Morphants also displayed significantly reduced dextran clearance via the pronephros compared to wildtype embryos, suggesting reduced renal function in morphants. The eye, kidney and heart defects reported in morphant zebrafish resemble the human phenotype of BBS5 mutations. The pathogenicity of the novel BBS5 mutation was determined. Mutant mRNA was unable to rescue pleiotropic phenotypes of bbs5 morphant zebrafish and in cell culture we demonstrate a mislocalisation of mutant BBS5 protein which fails to localise discretely with the basal body. CONCLUSIONS: We conclude that this novel BBS5 mutation has a deleterious function that accounts for the multisystem ciliopathy phenotype seen in affected human patients
Adaptive response and enlargement of dynamic range
Many membrane channels and receptors exhibit adaptive, or desensitized,
response to a strong sustained input stimulus, often supported by protein
activity-dependent inactivation. Adaptive response is thought to be related to
various cellular functions such as homeostasis and enlargement of dynamic range
by background compensation. Here we study the quantitative relation between
adaptive response and background compensation within a modeling framework. We
show that any particular type of adaptive response is neither sufficient nor
necessary for adaptive enlargement of dynamic range. In particular a precise
adaptive response, where system activity is maintained at a constant level at
steady state, does not ensure a large dynamic range neither in input signal nor
in system output. A general mechanism for input dynamic range enlargement can
come about from the activity-dependent modulation of protein responsiveness by
multiple biochemical modification, regardless of the type of adaptive response
it induces. Therefore hierarchical biochemical processes such as methylation
and phosphorylation are natural candidates to induce this property in signaling
systems.Comment: Corrected typos, minor text revision
- …
