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Multimodal Solution for a Waveguide Radiating Into
Multilayered Structures—Dielectric Property and

Thickness Evaluation
M. T. Ghasr, Student Member, IEEE, Devin Simms, and R. Zoughi, Fellow, IEEE

Abstract—Open-ended rectangular waveguides are widely used
for microwave and millimeter-wave nondestructive testing (NDT)
applications, such as detecting disbond and delamination in mul-
tilayered composite structures, thickness evaluation of dielectric
sheets and coatings on metal substrates, etc. When inspecting a
complex multilayered composite structure that is made of gener-
ally lossy dielectric layers with arbitrary thicknesses and backing,
the dielectric properties of a particular layer may be of particular
interest (e.g., radome inspection). The same is also true when
one is interested in the thickness, or, more importantly, thickness
variation, of a particular layer within such complex structures.
An essential tool for closely estimating the complex permittivity
and/or thickness is an accurate forward electromagnetic model for
simulating the reflection coefficient at the aperture of the probing
open-ended waveguide. To this end, this paper provides a full-wave
accurate forward model for calculating the reflection coefficient
from a generally lossy multilayered composite structure possessing
an arbitrary number of layers and respective thicknesses while
accounting for the influence of higher order modes. This model
is subsequently validated through comparisons with a commercial
numerical tool and actual measurements. Furthermore, a mea-
surement model is provided, which results in an iterative inverse
technique for estimating the complex permittivity and thickness
of a dielectric layer. Subsequently, this technique is applied to the
measured reflection coefficients of several structures. To evaluate
the accuracy of this technique, an analysis on its sensitivity to
various sources of errors, and, most importantly, the effect of
a finite flange size, is also demonstrated by using the simulated
data. Finally, the potential of this model to accurately estimate the
thickness of an individual layer, which represents a thin disbond,
in a multilayered composite structure is presented.

Index Terms—Complex permittivity, higher order modes,
open-ended waveguide, stratified dielectric medium, thickness.

I. INTRODUCTION

O PEN-ENDED rectangular waveguides are the most
widely used probes for near-field microwave and

millimeter-wave nondestructive testing (NDT) applications,
such as dielectric property measurement of materials, thick-
ness measurement of dielectric slabs, surface-breaking crack
detection in metals, and porosity level estimation in ceramics
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and polymers, to name a few [1]. When operating in the near
field of such a probe, the spatial resolution is a function of
the probe dimensions, and hence, obtaining high-resolution
images is readily possible at microwave and millimeter-wave
frequencies since the probe dimensions are relatively small.
Hence, these NDT methods compete very well with the other
NDT methods [1], [2]. In addition, when concerned with mul-
tilayered composite structures, a thickness variation detection
can be conducted with micrometer-range accuracy at relatively
low microwave frequencies [1]–[5]. Microwave NDT also has
the potential of providing information about the electrical prop-
erties of the dielectric structures. This is particularly important
for inspecting structures such as radomes since the electrical
properties of each layer in the structure directly affect whether
a radome is transparent to electromagnetic radiation [6]. Di-
electric property measurement using open-ended rectangular
waveguides has received significant attention from both the
modeling and experimental points of view. These works have
primarily been focused on the inspection of multilayered struc-
tures or infinite half spaces [5], [7]–[12]. An issue of concern
when evaluating the properties (thickness or dielectric) of a
particular layer in a multilayered composite is that, if the effect
of that layer on the overall reflection coefficient becomes small,
then any small modeling or measurement error may result
in a substantial error in the estimation of the desired layer
properties. In such cases, the error is commonly attributed to
the fact that the influence of higher order modes is ignored,
and only the influence of the dominant mode is taken into
account. Subsequently, this may result in slight or significant
errors when the model is used in an inverse manner for the
purpose of retrieving the complex permittivity or thickness of
a layer from the measured reflection coefficient. Some of the
prior studies have utilized variational methods, which result in
an approximate solution [5], and some utilize more rigorous
formulations while accounting for the effect of higher order
modes [7]–[12]. Although many of these methods can be used
to obtain the complex permittivity of a material, the sources
of errors such as the choice of higher order modes, design of
experimental setup, and the influence of noise or measurement
uncertainty have not fully been studied. For example, no study
has shown the contribution of higher order modes as a function
of the various features of a multilayered structure such as
layer thickness, dielectric profile, and whether the composite is
backed by a dielectric infinite half space or a conducting plate.
Furthermore, no study has shown the accuracy of the open-
ended waveguide technique for measuring the relative complex

0018-9456/$25.00 © 2008 IEEE
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permittivity and thickness of the thin layers, and an analysis
of the sources of errors when considering thin dielectric layers
such as a disbond. As will be shown in this paper, the effect of
higher order modes is much more significant when analyzing
a multilayered composite structure than when analyzing an
infinite half space of a material. The size of the flange is
another issue not fully addressed in previous investigations.
Many studies, for example, [10] and [11], either considered a
very large flange or used the waveguide radiation pattern to
determine the proper size of the flange.

This paper is an extension of the preliminary work reported
in [13], which gives an exact formulation for the reflection coef-
ficient at the aperture of an open-ended rectangular waveguide
irradiating a multilayered dielectric structure. This formulation
accounts for the contribution of transverse electric (TE) and
transverse magnetic (TM) higher order modes. Furthermore,
an analysis of the effect of higher order modes as a function
of parameters such as layer thickness and complex permittivity
and the number of higher order modes required for convergence
was presented in [13] followed by an example of estimating the
complex permittivity of a lossy rubber sheet. In this paper, the
formulation is validated by using the measured results obtained
from a multilayered structure consisting of lossy rubber and
low-loss acrylic sheets. Subsequently, the measured results are
used to estimate the complex permittivity of the two dielectric
sheets. Moreover, a model for the measured reflection coef-
ficient is provided, which leads to an optimum cost function
that is used in the inverse technique for estimating the desired
complex permittivity and thickness of a layer. Subsequently, the
performance of this technique in estimating the complex per-
mittivity of a sheet of dielectric within a multilayered structure
is evaluated. Furthermore, a detailed examination of the effect
of using a finite flange is presented and ultimately validated
by measuring the complex permittivity and thickness of rubber
sheets with different thicknesses. Finally, a multilayered com-
posite structure with thin dielectric layers representing disbonds
and/or adhesive layers is examined, and the thickness of these
thin layers are determined by using the simulated and measured
reflection coefficient data.

II. FORMULATION

In this paper, the reflection coefficient seen by an open-ended
waveguide radiating into a multilayered dielectric structure is
formulated in a similar fashion as [9] and [12]. Yoshitomi and
Sharobim [9] considered an open-ended waveguide aperture
terminated in a lossy flange and radiating into free space for
the purpose of examining the flange influence on the radiation
pattern, whereas Bois et al. [12] expanded these formulations
for an accurate extraction of the complex permittivity of a
generally lossy infinite half space of a dielectric material. This
paper extends this formulation to a general case of a multilay-
ered dielectric medium possessing any number of layers and
backed by an infinite half space or a conductor for the purpose
of an accurate extraction of the complex permittivity or the
thickness of any arbitrary layer. Fig. 1 shows a schematic of
an open-ended waveguide aperture radiating into a multilayered
structure. The waveguide aperture has a broad dimension of 2a
and a narrow dimension of 2b, cut into of an infinite conducting

Fig. 1. Geometry of the problem.

ground plane or flange, and radiating into a multilayered dielec-
tric structure backed by a conductor or an infinite half space of
a dielectric material. Each layer is defined by its relative (to free
space) complex permittivity (εr = ε′r − jε′′r) and relative com-
plex permeability (μr = μ′

r − jμ′′
r) as well as its thickness d.

The imaginary parts of the relative complex permittivity and
permeability represent the attenuation of the wave in the mate-
rial and are referred to as loss factor henceforth.

The electric and magnetic fields in all the regions may be
derived from the Hertzian vectors. For the incident field inside
the waveguide, a magnetic Hertzian vector with the dominant
TE10 mode distribution is used. On the other hand, the reflected
waves are represented by the electric and magnetic Hertzian
vectors, which represent a summation of all the possible TM
and TE waveguide modes. The definition for these Hertzian
vectors may be found in [9] and [12] and not repeated here.

In [9] and [12], the Hertzian vectors (outside the waveguide)
were defined for the case of an infinite half space, where
only a forward traveling wave exists. In a multilayered di-
electric structure, both forward and backward traveling waves
exist. Consequently, the definition of the electric and magnetic
Hertzian vectors is changed accordingly as

âz.

e∏
l

(x, y, z)

=
1

4π2k2
l

∞∫
−∞

∞∫
−∞

[
Ae+

l (ξ, η)e−jζz + Ae−
l (ξ, η)ejζz

]

× e−j(ξx+ηy)dξdη (1)

âz.
h∏
l

(x, y, z)

=
1

4π2k2
l Zl

∞∫
−∞

∞∫
−∞

[
Ah+

l (ξ, η)e−jζz + Ah−
l (ξ, η)ejζz

]

× e−j(ξx+ηy)dξdη (2)
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where k = ω
√

ε.μ, Z =
√

μ/ε, ζ =
√

k2 − ξ2 − η2, and
Ae,h(ξ, η) are the spectral domain wave functions representing
the radiated electromagnetic fields from the waveguide. These
functions are unknown and are determined subject to specific
boundary conditions. Since the discontinuities are along the
z-direction, both forward and backward propagating waves,
which are denoted by + and − superscripts, respectively, are
present in each layer. Furthermore, the subscript l = 1, 2, . . . , L
denotes the layer number. The expressions for converting the
Hertzian vectors into electric and magnetic fields and the
Fourier relationships to transform the field between the spatial
and spectral domains may be found in [9] and [12] and will not
be repeated here.

The reflection coefficient at the open-ended waveguide is ob-
tained by matching the boundary conditions at all the interfaces
and begins at the last layer (z = zL). For a conductor-backed
case, the tangential electric field (at the conductor boundary)
vanishes, which results in the total reflection

Ae−
L = Ae+

L e−2jζLzL , Ah−
L = −Ah+

L e−2jζLzL . (3)

On the other hand, for an infinite half-space case, the backward
traveling wave is zero since there is no mechanism for reflec-
tions, which results in

Ae−
L = 0, Ah−

L = 0. (4)

Matching the boundary conditions at the intermediate layers
results in the following relationships between the forward and
backward traveling waves:

Ae−
l−1

Ae+
l−1

=e−2jζl−1zl−1×Ce
l e2jζlzl−1(1 + Be

l )−e2jζlzl(1 − Be
l )

−Ce
l e2jζlzl−1(1−Be

l )+e2jζlzl(1+Be
l )
(5)

where

Be
l =

Zl−1klζl−1

Zlkl−1ζl
(6)

Ce
l−1 =

Ce
l e−2jζldl (1 + Be

l ) − (1 − Be
l )

−Ce
l e−2jζldl (1 − Be

l ) + (1 + Be
l )

. (7)

Similar expressions are obtained for the magnetic field
components

Bh
l =

Zlklζl−1

Zl−1kl−1ζl
(8)

Ch
l−1 =

Ch
l e−2jζldl

(
1 + Bh

l

)
−

(
1 − Bh

l

)
−Ch

l e−2jζldl

(
1 − Bh

l

)
+

(
1 + Bh

l

) . (9)

The Ce,h coefficients are iteratively obtained starting from
the last layer, where Ce

L = −Ch
L = 1 for a conductor-backed

case, and Ch
L = Ce

L = 0 for an infinite half-space case.
The boundary conditions at the waveguide aperture (z = 0)

dictate the continuity of the total electric and magnetic fields as

E
1
x,y =

{
E

wg
x,y, |x| ≤ a, |y| ≤ b

0, elsewhere
(10)

H
1
x,y =H

wg
x,y, |x| ≤ a, |y| ≤ b (11)

where the superscript wg denotes the total fields in the
waveguide, and the superscript 1 refers to the total fields in
the first layer. Applying these boundary conditions and utilizing
the orthogonal properties of the modes in the waveguide in a
very similar fashion to [9] and [12] results in the following two
linear systems of equations:

∞∑
m,n=1

[amI1(m,n, p, q) + bnI2(m,n, p, q)] kmnAe
mn

+
∞∑

m,n=0
m=n �=0

[bnI1(m,n, p, q) − amI2(m,n, p, q)] k0A
h
mn

+ ab
[
Ae

pqk0bq − Ah
pqkpqap(1 + δ0q)

] Z1

Z0

=
[
k0a1I2(1, 0, p, q) − 2k10a1ab

Z1

Z0
δ1pδ0q

]
Ai (12)

for p = 1, 2, 3, . . ., q = 0, 1, 2, 3, . . ., and

∞∑
m,n=1

[amI3(m,n, p, q) + bnI4(m,n, p, q)] kmnAe
mn

+
∞∑

m,n=0
m=n �=0

[bnI3(m,n, p, q) − amI4(m,n, p, q)] k0A
h
mn

+ ab
[
Ae

pqk0ap + Ah
pqkpqbq(1 + δ0p)

] Z1

Z0

= k0a1I4(1, 0, p, q)Ai (13)

for p = 0, 1, 2, 3, . . ., q = 1, 2, 3, . . ., where, m, n, p, and q are
the integers that represent the mode numbers. In the foregoing
equations, Ai is the complex amplitude of the incident TE10

field, whereas Ae
mn and Ah

mn are the coefficients of the reflected
and/or generated TM and TE modes at the waveguide aperture.
The summations and these coefficients represent the mapping
of the aperture electromagnetic fields on the waveguide modes.
These modes only exist at the aperture of the waveguide, and
only the dominant mode reflection coefficient Ah

10 is measured
in practice. The rest of the variables are defined as am =
mπ/2a, bn = nπ/2b, kmn =

√
k2
0 − a2

m − b2
n, and δpq is the

Kronecker delta, and the integrals I1,2,3,4 are

I1(m,n, p, q)

=
1

4π2

∞∫
−∞

∞∫
−∞

V1C
a
m(−ξ)Sb

n(−η)Sa
p (ξ)Cb

q(η)dξdη (14)

I2(m,n, p, q)

=
1

4π2

∞∫
−∞

∞∫
−∞

V2S
a
m(−ξ)Cb

n(−η)Sa
p (ξ)Cb

q(η)dξdη (15)

I3(m,n, p, q)

=
1

4π2

∞∫
−∞

∞∫
−∞

V3C
a
m(−ξ)Sb

n(−η)Ca
p (ξ)Sb

q(η)dξdη (16)

I4(m,n, p, q)

=
1

4π2

∞∫
−∞

∞∫
−∞

V1S
a
m(−ξ)Cb

n(−η)Ca
p (ξ)Sb

q(η)dξdη. (17)
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The C’s and S’s in the preceding integrals are the cosine and
sine integrals as defined in [12]. The variables V1,2,3 represent
the spatial spectral domain field distribution at the aperture
of the waveguide containing information about the properties
of the multilayered dielectric structure, which are defined as

V1 =
k2
1ηξ − ζ2

1ηξDh
1De

1

k1(ξ2 + η2)ζ1De
1

(18)

V2 =
k2
1η

2 + ζ2
1ξ2Dh

1De
1

k1(ξ2 + η2)ζ1De
1

(19)

V3 =
k2
1ξ

2 + ζ2
1η2Dh

1De
1

k1(ξ2 + η2)ζ1De
1

(20)

Dh
1 =

1 − Ch
1 e−2jζ1d1

1 + Ch
1 e−2jζ1d1

(21)

De
1 =

1 − Ce
1e−2jζ1d1

1 + Ce
1e−2jζ1d1

. (22)

The integrals in (14)–(17) may become singular, particularly
when the total loss (associated with the complex permittivity
of the layers) is relatively small. When numerically evaluating
these integrals, it is advantageous to transform them to polar
coordinates, as reported in [9]. However, unlike the cases
investigated in [9] and [12], where the structure is always
an infinite half space, and the singularity location is known
and can analytically be extracted, in a multilayered structure,
the singularity of the integrals depends on the profile of the
structure. Therefore, it is not possible to analytically extract
the singularities, and the integration must be performed and
evaluated on a contour around the singular points. Furthermore,
a conversion test must be performed prior to obtaining the final
and acceptable solution.

III. ANALYSIS

To verify and validate the formulation, the complex reflection
coefficient (Γ = |Γ|eφΓ) seen by an X-band (8.2–12.4 GHz)
waveguide radiating into free space was compared to the results
obtained by using computer simulation technology–microwave
studio (CST-MS) [14], which employs a 3-D electromagnetic
simulation. The results, which are similar to the previously
published data in [12], are shown in Fig. 2 in polar format.
These results show that while there is a major advantage in
including the higher order modes in the solution, their contribu-
tion becomes minimal beyond the first few modes. In fact, with
only six modes, it is possible to determine an accurate solution,
as also reported in [12]. Consequently, from now on, all of the
solutions that include higher order modes will only utilize six
modes.

In [12], it was shown that the error in the TE10 reflection
coefficient due to the exclusion of higher order modes decreases
as the permittivity and loss factor increase. However, this is
only true when the waveguide is radiating into an infinite
half space of a dielectric. When considering a finite dielectric
slab (i.e., sheet) or a multilayered structure, the thickness of
the dielectric layers has an effect on the contribution of the
higher order modes as well. To investigate this phenomenon,
simulations were performed for a slab of rubber with a relative
complex permittivity of (εr = 7.3 − j 0.3) and a slab of acrylic

Fig. 2. Reflection coefficient seen by an X-band open-ended waveguide
radiating into free space. The effect of higher order modes over the frequency
band of 8.2–12.4 GHz (X-band).

Fig. 3. Percent error in reflection coefficient calculation due to the exclusion
of higher order modes versus normalized slab thickness.

with a relative complex permittivity of (εr = 2.6 − j 0.01).
The reflection coefficient considering the higher order modes
(Γw/_HOM ) and the reflection coefficient without considering
the higher order modes (Γw/o_HOM ) are simulated for each
material with varying thickness. The percent error is defined as
the Euclidean distance between these two simulated reflection
coefficients and normalized to Γw/_HOM . Two cases of con-
ductor backed and an infinite half space of air backing were
simulated for each slab. Fig. 3 shows the percentage error in
terms of slab thickness (normalized to the wavelength in the
dielectric slab). The results show that, for the case of an infinite
half space of air, as the thickness of the slab increases (moving
toward infinite half space), the materials with higher relative
permittivity and loss factor (i.e., rubber) produce less significant
higher order modes compared to the materials with low relative
permittivity and loss factor (i.e., acrylic). These results are
in agreement with the results reported in [12]. Conversely,
when the thickness of the slab decreases, depending on the
absolute value of the thickness, the opposite may occur, and

Authorized licensed use limited to: University of Missouri System. Downloaded on May 6, 2009 at 15:33 from IEEE Xplore.  Restrictions apply.
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Fig. 4. Effect of higher order modes in the presence of a thin lossy material. (a) Measurement setup. (b) Measurement versus simulation results.

the contribution of higher order modes become more significant
for high relative permittivity materials. This is attributed to
the strong multiple reflections in a slab with a finite thickness.
Furthermore, this effect becomes more prominent when the slab
is backed by a conductor, as shown in Fig. 3. Fig. 4 shows a
comparison between the measured results and the correspond-
ing simulations for a three-layer structure made of rubber,
acrylic, and an infinite half space of air backing [Fig. 4(a)].
The measurement was performed by using an Agilent 8510C
vector network analyzer (VNA) with an X-band open-ended
rectangular waveguide (with a standard flange). The results
in Fig. 4(b) are shown in polar format. As expected (given
the findings in Fig. 3), the presence of a thin lossy rubber at
the opening of the waveguide and the multiple reflections in the
structure increase the influence of higher order modes on the
reflection coefficient. Furthermore, the effect of higher order
modes is more prominent at the higher end of the frequency
band, consistent with the results reported in [12].

IV. INVERSE PROBLEM

Consider a general inverse problem where the goal is to
estimate or retrieve one of the physical or electrical properties
of at least one layer in a multilayered composite structure.
These unknown properties may be any one of the parameters
from the set of {dl, εrl, and μrl}, where l = 1, 2, . . . , L is the
layer number. Since the aforementioned forward model is non-
invertible in a straightforward or direct fashion, iterative search
algorithms are used to retrieve a desired unknown parameter.
To reach an acceptable solution, all of the search algorithms
require an optimum cost function that needs to be minimized.
The measured complex reflection coefficient (Γm), which is
a function of the operating frequency and the properties of
the irradiated multilayered structure, namely, electromagnetic
properties (εr and μr) and thicknesses (d), is described by

Γm(fi, d, εr, μr) = Γa(fi, d, εr, μr) + γi (23)

where Γa is the actual reflection coefficient under ideal con-
ditions (e.g., simulated), and γi represents the frequency-

dependent measurement uncertainty. This uncertainty is a com-
plex quantity that represents the collective error (or noise) in
the measurements, which may be due to measurement system
noise, modeling errors due to a finite-sized flange, errors in
known or measured electrical or dimensional properties, etc.
Hereon, γi, which is referred to as noise, is assumed to have a
zero-mean Gaussian distribution with a variance of No (No is
the total power in the noise). The Gaussian assumption, which
is based on having several independent sources of uncertain-
ties, is supported by the central limit theorem. Furthermore, it
is a common practice to average the multiple measurements
taken over time and space, which gives more credence to the
aforementioned reasoning of the central limit theorem. Conse-
quently, the optimum solution for the inverse problem is the
solution that minimizes the cost function |Γm − Γa|2 [3].

Since the forward model (Section II) is computationally
intensive, fast converging algorithms are highly preferred when
performing the iterative inverse parameter extraction. Sequen-
tial quadratic programming (SQP) has shown to outperform
other search methods when considering its efficiency and ac-
curacy. However, like other gradient search methods, it suffers
from the possible convergence to the local minima [15], [16].
This problem is more significant in a multilayered structure due
to the multiple reflections that make the measured reflection
coefficient unpredictable and cause the cost function to have
multiple local minima. The multiple local minima make the
solution highly dependent on the choice of the initial guess
value. Performing a multiple parallel search, as suggested in
[15], alleviates this problem by searching for all the minima and
eventually finding the global minima that lead to the optimum
solution. This method, although effective in eliminating the
convergence to the local minima, increases the search time.
The solution proposed here is divided into two steps. In the
first step, the diversity of the measurement over the frequency
band is utilized. For this purpose, the cost function F is
modified as

F =
1

Nf

Nf∑
i=1

|Γm(fi) − Γa(fi)|2 (24)
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TABLE I
ESTIMATING/RETRIEVING THE COMPLEX PERMITTIVITIES OF RUBBER AND ACRYLIC SHEETS

where fi’s (i = 1, 2, . . . , Nf ) are the discrete frequencies
within the waveguide band. This cost function significantly
reduces the number of local minima. Using this cost function
and the fact that the relative complex permittivity dispersion
of most materials within a narrow band of frequencies (such
as the X-band used here) is usually small, SQP estimates an
average solution for the desired material property. If the average
solution is acceptable, then the process may be terminated
at that point. Otherwise, a second step of SQP optimization,
which uses the solution from the first step as an initial guess,
can provide a frequency-dependent solution. This process en-
sures convergence to the global minimum, which leads to the
optimum solution. The choice of the number of frequency
points depends on the particular structure being investigated.
Intuitively, choosing a large number of points always leads to a
better solution. However, this is achieved at a higher processing
cost. As a rule of thumb, an adequate number of frequency
points must be used to properly trace the trajectory of the
reflection coefficient in the complex domain.

The measurement setup in Fig. 4 was used to estimate or
retrieve εr of the individual layers using the cost function F ,
as expressed in (24) using 11 frequencies within the band.
In this experiment, when estimating εr of a layer, all of the
other parameters (i.e., thicknesses and material properties of
other layers) were assumed to be known (consistent with actual
practical NDT cases). The results for estimating εr of the rubber
and acrylic sheets, with and without accounting for the effect
of higher order modes, are listed in Table I. These results are
compared to the measurements performed using the completely
filled waveguide technique [17], [18]. The results indicate that
when taking the higher order modes into consideration, the
estimated εr for the lossy rubber sheet is within less than
1% of the actual εr for the real part and within less than
10% for the imaginary part, which is within the accuracy
limits of the completely filled waveguide technique [17]. On
the other hand, ignoring the higher order modes results in a
bias in the estimate of εr. This bias is particularly significant
when estimating the loss factor. For the low-loss acrylic, εr is
also accurately estimated when utilizing higher order modes,
although the imaginary part is underestimated. This method,
like other free-space measurement techniques, is not intended
for an accurate measurement of the loss factor of low-loss
materials. However, this example shows the improvement in the
results when considering the higher order modes. The fact that
the real part of εr is closely estimated for the acrylic sheet is
due the presence of the rubber sheet, which concentrates the
radiated fields and significantly reduces the surface waves [19],
and hence enhances the measurement. A comparison between

Fig. 5. Complex permittivity estimation error versus SNR.

the estimated εr of the rubber and acrylic shows that when
excluding the higher order modes (last column in Table I),
the bias in estimating εr of the acrylic is not as significant as
that for the rubber. This may be attributed to the fact that the
acrylic sheet is the second layer in the structure, which makes
its contribution to the overall reflection coefficient to be less
than the first rubber layer.

V. ERROR ANALYSIS

A. Measurement Uncertainty and Noise

As earlier mentioned, all sources of uncertainty may be
modeled as a Gaussian-distributed noise (γ) with power of No.
Fig. 5 shows the average absolute error in estimating the relative
complex permittivity of a conductor-backed slab as a function
of the signal-to-noise ratio (SNR). These results are semi-
empirically obtained through simulating several experiments.
In every simulated experiment, an ideal reflection coefficient
(e.g., simulated) is contaminated with a Gaussian-distributed
noise, as defined by (23), with a certain SNR value. The SNR
is defined as

SNR = 10 log

⎛
⎜⎜⎜⎝

1
Nf

Nf∑
i=1

|Γa(fi)|2

N0

⎞
⎟⎟⎟⎠ . (25)

Subsequently, this contaminated reflection coefficient is used
to estimate the relative complex permittivity, as previously
described. Two hundred simulations were performed for each

Authorized licensed use limited to: University of Missouri System. Downloaded on May 6, 2009 at 15:33 from IEEE Xplore.  Restrictions apply.



GHASR et al.: MULTIMODAL SOLUTION FOR A WAVEGUIDE RADIATING INTO MULTILAYERED STRUCTURES 1511

Fig. 6. Effect of flange size on errors in measuring the reflection coefficient
for three cases of conductor-backed dielectric slab.

SNR, and the average results are shown in Fig. 5. The results
show the performance of this method in estimating the relative
complex permittivity of a single conductor-backed layer. Simi-
lar simulations may be performed to assess the performance for
any given multilayered structure.

B. Effect of Finite Flange

One major source of error in using this method may be due
to the finite size of the flange. In previous studies, the flange
size was either made very large [10] or chosen based on the
pattern of the electric field [11]. Using the electric field pattern
method works well in determining the required flange size for a
lossy material due to the rapid decay in field strength. However,
when the material is thin or low loss, the flange in conjunction
with a conductor backing acts as a parallel transmission line
that guides the wave toward the edges of the sample, which
may cause significant (depending on the desired measurement
accuracy) inaccuracies in the measurements due to reflections
at the sample edges. To evaluate the effect of flange size,
CST-MWS [14] was used to perform 3-D simulations for a
conductor-backed single dielectric slab. Cases for various di-
electric slab thickness, loss factor, and finite flange sizes were
simulated and compared to the case of an infinite flange size (as
per Section II). In all of the simulation scenarios, the material
and conductor backing were assumed to be infinite in extent.
Fig. 6 shows the percent error in measured reflection coefficient
versus the flange size for three cases; namely, a thick lossy
dielectric slab (0.75λ lossy), a thin lossy slab (0.1λ lossy), and
a thick low-loss dielectric slab (1λ low loss). The percent error
is defined as

%Error|Γ| = 100
1

Nf

Nf∑
i=1

|Γinf(fi) − Γfin(fi)|
|Γinf(fi)|

(26)

where Γinf is the measured reflection coefficient using an
infinite flange, and Γfin is the reflection coefficient measured

using a finite flange. The results show that for a thick lossy
material, any flange size larger than (λ2

o) is sufficient for
accurately measuring the reflection coefficient since the error
in the reflection coefficient caused by the noninfinite flange
is very small (< 1% equivalent to −40 dB). However, if the
dielectric slab is thin or if it is low loss, then a relatively large
flange (> 5 λ2

o) is required to have an accurate measurement
of the reflection coefficient. From the results in Figs. 5 and
6, one can design the measurement setup with an adequate
flange size to obtain the desired accuracy when estimating
the relative complex permittivity. In Fig. 6, the error does
not go below 0.1% due to the accuracy of the numerical
simulation tool.

VI. MEASUREMENTS

A. Thin Dielectric Sheets

To verify the effect of slab thickness on estimating the rela-
tive complex permittivity, four samples of a lossy rubber with
various thicknesses were prepared (Table II). The actual relative
complex permittivity of the samples was measured by using
the completely filled waveguide technique [18]. Five different
cuts of each sample were measured, and the average relative
complex permittivities are reported in Table II, as the actual
εr. Furthermore, these samples showed a very small dispersion
of εr over the X-band frequencies. The open-ended waveguide
measurements were performed with the rubber sheets on a
conductor backing. To perform the open-ended waveguide
measurements, an X-band waveguide was fitted with a square
flange with a side dimension of 5λo. Nine measurements were
performed on these samples by using an Agilent 8510C VNA
and by incorporating 21 frequencies that are equally distributed
within the band. A limited number of frequency points are used
since the forward model is computationally intensive. On a
2.8-GHz Pentium processor, solving for εr at each frequency
required 93 s of processing time. First, εr was estimated by
assuming that the thickness is known, and later, the thickness
was estimated assuming that εr is known. A summary of the
results is shown in Table II. As expected, estimating εr of
the thin samples, compared to the thicker samples, did not
yield accurate results for the loss factor, whereas the real part
was estimated with good accuracy. Furthermore, the bias in
estimating the loss factor decreased with increasing thickness.
Table II also shows that while the thickness is estimated with
high accuracy (within 0.1 mm), the effect of ignoring the higher
order modes is not significant for this particular case. This
may be advantageous since solving for only one mode instead
of six modes reduces the processing time by a factor of 16.
The insensitivity to the exclusion of higher order modes may
be attributed to the fact that the physical thickness is directly
proportional to the electrical thickness and hence the real part
of εr, which is also not significantly affected by the exclusion
of higher order modes, as shown in Table I. However, this
may not generally be the case, particularly in a multilayered
structure with very thin layers in between the thicker layers,
where the contribution of the thin layers to the overall reflection
coefficient is insignificant.
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TABLE II
ESTIMATING THE RELATIVE COMPLEX PERMITTIVITY AND THICKNESS OF VARIOUS RUBBER SAMPLES

TABLE III
ESTIMATING THE THICKNESS OF THIN LAYERS WITHIN A SPECIFIC MULTILAYERED COMPOSITE

B. Thickness Estimation of Thin Disbonds

A particular application for this technique is in the NDT field
for estimating the thickness of the thin disbonds and delami-
nation within a multilayered composite structure. Other appli-
cations may include measuring the thickness of the adhesive
layers in layered composites for quality control purposes. To
assess the potential of this technique, a multilayered structure
consisting of five layers, as described in Table III, was prepared.
Thin Teflon layers were placed in this structure to simulate
disbonds and delaminations or adhesive layers in this layered
composite. The thickness estimation of the thin Teflon layers
was performed by using simulated and measured data. The
simulated/measured reflection coefficient was taken with the
X-band open-ended waveguide at layer 1 with the structure ter-
minating in an infinite half space of air. The simulated reflection
coefficient was obtained by taking 15 modes into consideration,
whereas only six modes are used in the estimation process. A
random Gaussian noise with a −50-dB variance was added to
the simulated reflection coefficient data, as per (23), to mimic
the uncertainties due to system noise, calibration errors, and
any unwanted reflections. The thicknesses of layers 2 and 4
(representing disbonds) were separately estimated by using
11 frequencies equally spaced in the X-band frequency range.
The simulated results show an error of less than 2% when in-
cluding the higher order modes and an error of up to 60% when
excluding the higher order modes. The estimated thicknesses,
from the measured reflection coefficient, show an error of about
16% for the thickness of layer 2 and 21% for the thickness
of layer 4 when including the higher order modes. The error
encountered here may be contributed to the presence of thin air
gaps between the layers and the inaccuracies associated with
εr. The larger error in layer 4 may be due to the farther distance
of the layer from the probing open-ended waveguide. On the

other hand, excluding the higher order modes resulted in errors
of up to 66%.

VII. SUMMARY

The results of formulating the reflection properties of an
open-ended rectangular waveguide irradiating a multilayer
dielectric composite have been presented. This formulation uti-
lizes Fourier analysis, which provides a complete nonapproxi-
mate solution of incorporating any and all of the higher order
modes. It has been shown that the contribution of higher order
modes is frequency and structure dependent. Most importantly,
when measuring the reflection coefficient from a dielectric slab,
the effect of the higher order modes significantly increases
when the slab is thin relative to the wavelength. A simple analy-
sis was performed to obtain a metric for the performance of this
technique in estimating the relative complex permittivity. This
analysis was particularly useful in designing the measurement
setup given a particular requirement of estimation accuracy.
The size of the flange is also an important issue for ensuring
an accurate estimation of the loss factor, in particular for thin
and low-loss conductor-backed materials. When estimating the
relative complex permittivity of the low-loss materials, it may
be covered with a lossy slab of dielectric to ensure that no
surface wave propagates on the low-loss dielectric, which in
turn relaxes the requirement for using a large flange. Fur-
thermore, this technique provides for a better accuracy if the
structure is backed with an infinite half space due to the relaxed
requirement of flange size. An iterative inverse model (in lieu
of a direct inverse approach) was developed with an optimum
cost function. This inverse model was used to calculate or
retrieve the relative complex permittivity of the thin slabs of
rubber and acrylic from measured data. The results showed
that when accounting for higher order modes, a significant
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improvement in measurement accuracy can be obtained, par-
ticularly when there is interest in the retrieving the loss factor.
Furthermore, estimating the relative complex permittivity and
thickness of several lossy conductor-backed slabs was also
demonstrated, highlighting the errors encountered in measuring
the loss factor of the thin samples. For this particular case,
the thickness estimation was quite robust and was not strongly
dependent on the inclusion of higher order modes, which, for
this purpose, can be considered to significantly reduce the
required processing time. Furthermore, estimating the thickness
of a relatively thin and low-loss layer in a multilayered structure
was demonstrated using simulated and measured results.
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