344 research outputs found

    High-dispersion spectroscopic observations of Venus during 1968 and 1969 II. The carbon-dioxide band at 8689A

    Get PDF
    Thirty well-exposed photographic plates showing the spectrum of the carbon dioxide band at 8689A in the atmosphere of Venus were obtained during 1968 and 1969. All spectra were obtained at a dispersion of 2 A/mm for Venus phase angles varying from 10 deg. to 126 deg. Rotational temperatures ranging from 236 K to 274 K were found. The average value of the rotational temperature is 246 + or - 1 K (one standard deviation); for 1967 observations, the rotational temperatures ranged from 222 to 248 K, with an average value of 238 + or - 4 K. The variation of the equivalent width of the 8689A band, with Venus phase angle, was very similar for the two sets of observations (53 plates). The temporal variations, of approximately 30 percent, were comparable with the phase variations over this limited range of phase angle

    Spatially Offset Raman Spectroscopic (SORS) Analysis of Wine Alcoholic Fermentation: A Preliminary Study

    Get PDF
    Spatially offset Raman spectroscopy (SORS) is a non-invasive analytical technique that allows the analysis of samples through a container. This makes it an effective tool for studying food and beverage products, as it can measure the sample without being affected by the packaging or the container. In this study, a portable SORS equipment was used for the first time to analyse the alcoholic fermentation process of white wine. Different sample measurement arrangements were tested in order to determine the most effective method for monitoring the fermentation process and predicting key oenological parameters. The best results were obtained when the sample was directly measured through the glass container in which the fermentation was occurring. This allowed for the accurate monitoring of the process and the prediction of density and pH with a root mean square error of cross-validation (RMSECV) of 0.0029 g·L−1 and 0.04, respectively, and R2 values of 0.993 and 0.961 for density and pH, respectively. Additionally, the sources of variability depending on the measurement arrangements were studied using ANOVA-Simultaneous Component Analysis (ASCA)

    Heterozygous, Polyploid, Giant Bacterium, Achromatium, Possesses an Identical Functional Inventory Worldwide across Drastically Different Ecosystems

    Get PDF
    Achromatium is large, hyperpolyploid and the only known heterozygous bacterium. Single cells contain approximately 300 different chromosomes with allelic diversity far exceeding that typically harbored by single bacteria genera. Surveying all publicly available sediment sequence archives, we show that Achromatium is common worldwide, spanning temperature, salinity, pH, and depth ranges normally resulting in bacterial speciation. Although saline and freshwater Achromatium spp. appear phylogenetically separated, the genus Achromatium contains a globally identical, complete functional inventory regardless of habitat. Achromatium spp. cells from differing ecosystems (e.g., from freshwater to saline) are, unexpectedly, equally functionally equipped but differ in gene expression patterns by transcribing only relevant genes. We suggest that environmental adaptation occurs by increasing the copy number of relevant genes across the cell’s hundreds of chromosomes, without losing irrelevant ones, thus maintaining the ability to survive in any ecosystem type. The functional versatility of Achromatium and its genomic features reveal alternative genetic and evolutionary mechanisms, expanding our understanding of the role and evolution of polyploidy in bacteria while challenging the bacterial species concept and drivers of bacterial speciation

    Structure of mixed ombrophyllous forests with Araucaria angustifolia (Araucariaceae) under external stress in Southern Brazil.

    Get PDF
    This study is part of the Floristic and Forest Inventory of Santa Catarina, conceived to evaluate forest resources, species composition and structure of forest remnants, providing information to update forest conservation and land use policy in Southern Brazilian State of Santa Catarina (95 000km²). In accordance to the Brazilian National Forest Inventory (IFN-BR), the inventory applies systematic sampling, with 440 clusters containing four crosswise 1 000m² plots (20x50m) each, located on a 10x10km grid overlaid to land use map based on classification of SPOT-4 images from 2005. Within the sample units, all woody individuals of the main stratum (DBH?10cm) are measured and collected (fertile and sterile), if not undoubtedly identified in field. Regeneration stratum (height>1.50m; DBH<10cm) is registered in 100m² in each sample unit. Floristic sampling includes collection of all fertile trees, shrubs and herbs within the sample unit and in its surroundings. This study performs analysis based on 92 clusters measured in 2008 within an area of 32 320km² of mixed ombrophyllous forests with Araucaria angustifolia located at the state’s high plateau (500m to 1 560m above sea level at 26º00’-28º30’ S and 49º13’-51º23’ W). Mean density (DBH?10cm) is 578 individuals/ha (ranging from 85/ha to 1 310/ha), mean species richness in measured remnants is 35 (8 to 62), Shannon and Wiener diversity index (H’) varies between 1.05 and 3.48. Despite high total species diversity (364 Magnoliophyta, five Coniferophyta and one tree fern) and relatively high mean basal area (25.75m²/ha, varying from 3.87 to 68.85m²/ ha), the overwhelming majority of forest fragments are considered highly impacted and impoverished, mostly by logging, burning and extensive cattle farming, turning necessary more efficient protection measures. Basal area was considered an appropriate indicator for stand quality and conservation status

    Assessment of variability sources in grape ripening parameters by using FTIR and multivariate modelling

    Get PDF
    The variability in grape ripening is associated with the fact that each grape berry undergoes its own biochemical processes. Traditional viticulture manages this by averaging the physicochemical values of hundreds of grapes to make decisions. However, to obtain accurate results it is necessary to evaluate the different sources of variability, so exhaustive sampling is essential. In this article, the factors “grape maturity over time” and “position of the grape” (both in the grapevine and in the bunch/cluster) were considered and studied by analyzing the grapes with a portable ATR-FTIR instrument and evaluating the spectra obtained with ANOVA–simultaneous component analysis (ASCA). Ripeness over time was the main factor affecting the characteristics of the grapes. Position in the vine and in the bunch (in that order) were also significantly important, and their effect on the grapes evolves over time. In addition, it was also possible to predict basic oenological parameters (TSS and pH with errors of 0.3 °Brix and 0.7, respectively). Finally, a quality control chart was built based on the spectra obtained in the optimal state of ripening, which could be used to decide which grapes are suitable for harvest

    A bacterial quorum-sensing precursor induces mortality in the marine coccolithophore, Emiliania huxleyi

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 7 (2016): 59, doi:10.3389/fmicb.2016.00059.Interactions between phytoplankton and bacteria play a central role in mediating biogeochemical cycling and food web structure in the ocean. However, deciphering the chemical drivers of these interspecies interactions remains challenging. Here, we report the isolation of 2-heptyl-4-quinolone (HHQ), released by Pseudoalteromonas piscicida, a marine gamma-proteobacteria previously reported to induce phytoplankton mortality through a hitherto unknown algicidal mechanism. HHQ functions as both an antibiotic and a bacterial signaling molecule in cell–cell communication in clinical infection models. Co-culture of the bloom-forming coccolithophore, Emiliania huxleyi with both live P. piscicida and cell-free filtrates caused a significant decrease in algal growth. Investigations of the P. piscicida exometabolome revealed HHQ, at nanomolar concentrations, induced mortality in three strains of E. huxleyi. Mortality of E. huxleyi in response to HHQ occurred slowly, implying static growth rather than a singular loss event (e.g., rapid cell lysis). In contrast, the marine chlorophyte, Dunaliella tertiolecta and diatom, Phaeodactylum tricornutum were unaffected by HHQ exposures. These results suggest that HHQ mediates the type of inter-domain interactions that cause shifts in phytoplankton population dynamics. These chemically mediated interactions, and other like it, ultimately influence large-scale oceanographic processes.This research was support through funding from the Gordon and Betty Moore Foundation through Grant GBMF3301 to MJ and TM; NIH grant from the National Institute of Allergy and Infectious Disease (NIAID – 1R21Al119311-01) to TM and KW; the National Science Foundation (OCE – 1313747) and US National Institute of Environmental Health Science (P01-ES021921) through the Oceans and Human Health Program to BM. Additional financial support was provided to TM from the Flatley Discovery Lab

    Developmental Research in Space: Predicting Adult Neurobehavioral Phenotypes via Metabolomic Imaging

    Get PDF
    As human habitation and eventual colonization of space becomes an inevitable reality, there is a necessity to understand how organisms develop over the life span in the space environment. Microgravity, altered CO2, radiation and psychological stress are some of the key factors that could affect mammalian reproduction and development in space, however there is a paucity of information on this topic. Here we combine early (neonatal) in vivo spectroscopic imaging with an adult emotionality assay following a common obstetric complication (prenatal asphyxia) likely to occur during gestation in space. The neural metabolome is sensitive to alteration by degenerative changes and developmental disorders, thus we hypothesized that that early neonatal neurometabolite profiles can predict adult response to novelty. Late gestation fetal rats were exposed to moderate asphyxia by occluding the blood supply feeding one of the rats pair uterine horns for 15min. Blood supply to the opposite horn was not occluded (within-litter cesarean control). Further comparisons were made with vaginal (natural) birth controls. In one-week old neonates, we measured neurometabolites in three brain areas (i.e., striatum, prefrontal cortex, and hippocampus). Adult perinatally-asphyxiated offspring exhibited greater anxiety-like behavioral phenotypes (as measured the composite neurobehavioral assay involving open field activity, responses to novel object, quantification of fecal droppings, and resident-intruder tests of social behavior). Further, early neurometabolite profiles predicted adult responses. Non-invasive MRS screening of mammalian offspring is likely to advance ground-based space analogue studies informing mammalian reproduction in space, and achieving high-priority multigenerational research that will enable studies of the first truly space-developed mammals

    Nanoscale Study of Calcium Handling Remodeling in Right Ventricular Cardiomyocytes Following Pulmonary Hypertension

    Get PDF
    Pulmonary hypertension is a complex disorder characterized by pulmonary vascular remodeling and right ventricular hypertrophy, leading to right heart failure. The mechanisms underlying this process are not well understood. We hypothesize that the structural remodeling occurring in the cardiomyocytes of the right ventricle affects the cytosolic Ca2+ handling leading to arrhythmias. After 12 days of monocrotaline-induced pulmonary hypertension in rats, epicardial mapping showed electrical remodeling in both ventricles. In myocytes isolated from the hypertensive rats, a combination of high-speed camera and confocal line-scan documented a prolongation of Ca2+ transients along with a higher local Ca2+-release activity. These Ca2+ transients were less synchronous than in controls, likely due to disorganized transverse-axial tubular system. In fact, following pulmonary hypertension, hypertrophied right ventricular myocytes showed significantly reduced number of transverse tubules and increased number of axial tubules; however, Stimulation Emission Depletion microscopy demonstrated that the colocalization of L-type Ca2+ channels and RyR2 (ryanodine receptor 2) remained unchanged. Finally, Stimulation Emission Depletion microscopy and super-resolution scanning patch-clamp analysis uncovered a decrease in the density of active L-type Ca2+ channels in right ventricular myocytes with an elevated open probability of the T-tubule anchored channels. This may represent a general mechanism of how nanoscale structural changes at the early stage of pulmonary hypertension impact on the development of the end stage failing phenotype in the right ventricle
    corecore