9 research outputs found

    Emerging roles of melanocortin receptor accessory proteins (MRAP and MRAP2) in physiology and pathophysiology.

    Get PDF
    Melanocortin-2 receptor accessory protein (MRAP) has an unusual dual topology and influences the expression, localisation, signalling and internalisation of the melanocortin receptor 2 (MC ); the adrenocorticotropic hormone (ACTH) receptor. Mutations in MRAP are associated with familial glucocorticoid deficiency type-2 and evidence is emerging of the importance of MRAP in adrenal development and ACTH signalling. Human MRAP has two functional splice variants: MRAP-α and MRAP-β, unlike MRAP-β, MRAP-α has little expression in brain but is highly expressed in ovary. MRAP2, identified through whole human genome sequence analysis, has approximately 40% sequence homology to MRAP. MRAP2 facilitates MC2 localisation to the cell surface but not ACTH signalling. MRAP and MRAP2 have been found to regulate the surface expression and signalling of all melanocortin receptors (MC ). Additionally, MRAP2 moderates the signalling of the G-protein coupled receptors (GCPRs): orexin, prokineticin and GHSR1a; the ghrelin receptor. Whilst MRAP appears to be mainly involved in glucocorticoid synthesis, an important role is emerging for MRAP2 in regulating appetite and energy homeostasis. Transgenic models indicate the importance of MRAP in adrenal gland formation. Like MC3R and MC4R knockout mice, MRAP2 knockout mice have an obese phenotype. In vitro studies indicate that MRAP2 enhances the MC3 and MC4 response to the agonist αMSH, which, like ACTH, is produced through precursor polypeptide proopiomelanocortin (POMC) cleavage. Analysis of cohorts of individuals with obesity have revealed several MRAP2 genetic variants with loss of function mutations which are causative of monogenic hyperphagic obesity with hyperglycaemia and hypertension. MRAP2 may also be associated with female infertility. This review summarises current knowledge of MRAP and MRAP2, their influence on GPCR signalling, and focusses on pathophysiology, particularly familial glucocorticoid deficiency type-2 and obesity. [Abstract copyright: Copyright © 2020 Elsevier B.V. All rights reserved.

    Loss-of-function mutations in MRAP2 are pathogenic in hyperphagic obesity with hyperglycemia and hypertension

    No full text
    International audienceThe G-protein-coupled receptor accessory protein MRAP2 is implicated in energy control in rodents, notably via the melanocortin-4 receptor1. Although some MRAP2 mutations have been described in people with obesity1-3, their functional consequences on adiposity remain elusive. Using large-scale sequencing of MRAP2 in 9,418 people, we identified 23 rare heterozygous variants associated with increased obesity risk in both adults and children. Functional assessment of each variant shows that loss-of-function MRAP2 variants are pathogenic for monogenic hyperphagic obesity, hyperglycemia and hypertension. This contrasts with other monogenic forms of obesity characterized by excessive hunger, including melanocortin-4 receptor deficiency, that present with low blood pressure and normal glucose tolerance4. The pleiotropic metabolic effect of loss-of-function mutations in MRAP2 might be due to the failure of different MRAP2-regulated G-protein-coupled receptors in various tissues including pancreatic islets
    corecore