10 research outputs found
A lysosomal enigma CLN5 and its significance in understanding neuronal ceroid lipofuscinosis
Neuronal Ceroid Lipofuscinosis (NCL), also known as Batten disease, is an incurable childhood brain disease. The thirteen forms of NCL are caused by mutations in thirteen CLN genes. Mutations in one CLN gene, CLN5, cause variant late-infantile NCL, with an age of onset between 4 and 7 years. The CLN5 protein is ubiquitously expressed in the majority of tissues studied and in the brain, CLN5 shows both neuronal and glial cell expression. Mutations in CLN5 are associated with the accumulation of autofluorescent storage material in lysosomes, the recycling units of the cell, in the brain and peripheral tissues. CLN5 resides in the lysosome and its function is still elusive. Initial studies suggested CLN5 was a transmembrane protein, which was later revealed to be processed into a soluble form. Multiple glycosylation sites have been reported, which may dictate its localisation and function. CLN5 interacts with several CLN proteins, and other lysosomal proteins, making it an important candidate to understand lysosomal biology. The existing knowledge on CLN5 biology stems from studies using several model organisms, including mice, sheep, cattle, dogs, social amoeba and cell cultures. Each model organism has its advantages and limitations, making it crucial to adopt a combinatorial approach, using both human cells and model organisms, to understand CLN5 pathologies and design drug therapies. In this comprehensive review, we have summarised and critiqued existing literature on CLN5 and have discussed the missing pieces of the puzzle that need to be addressed to develop an efficient therapy for CLN5 Batten disease
Effective gene therapy in CLN5 Ovine Batten disease
Lambs homozygous for a mutation causing CLN5 Batten disease (neuronal ceroid lipofuscinosis, NCL) injected with viral vectors containing the corrective gene showed no signs of disease development a year later, whereas uninjected affected animals declined considerably.
AAV9 and lentiviral derived vectors expressing green fluorescent protein showed widespread expression 30 days after direct injection into the lateral ventricles or parenchyma of sheep with no ill effects. Injection of vectors loaded with the corrective ovine CLN5 sequence into preclinical affected lambs at 2-4 months was followed by monitoring over the next 12 months. In all three tests performed monthly, neurological and eyesight tests, monitoring of their ability to join cohorts by navigating through a maze and estimates of cranial cavity volumes in vivo from CT scans, the injected sheep were indistinguishable from the unaffected controls. Over this time the non-injected affected controls declined markedly and developed obvious clinical symptoms, to the point of being unable to navigate the maze. Monitoring of the injected sheep continues. Similar injections into CLN6 affected sheep were not nearly as effective, only 1/6 showing a difference from non-injected affected controls.This research was funded by grants from Cure Kids New Zealand, the Batten Disease Support and Research Association (BDSRA), Batten Disease New Zealand and the American New Zealand Association
Longitudinal in vivo monitoring of the CNS demonstrates the efficacy of gene therapy in a sheep model of CLN5 Batten disease
Neuronal ceroid lipofuscinoses (NCLs; Batten disease) are neurodegenerative lysosomal storage diseases predominantly affecting children. Single administration of brain-directed lentiviral or recombinant single-stranded adeno-associated virus 9 (ssAAV9) vectors expressing ovine CLN5 into six pre-clinically affected sheep with a naturally occurring CLN5 NCL resulted in long-term disease attenuation. Treatment efficacy was demonstrated by non-invasive longitudinal in vivo monitoring developed to align with assessments used in human medicine. The treated sheep retained neurological and cognitive function, and one ssAAV9-treated animal has been retained and is now 57 months old, almost triple the lifespan of untreated CLN5-affected sheep. The onset of visual deficits was much delayed. Computed tomography and MRI showed that brain structures and volumes remained stable. Because gene therapy in humans is more likely to begin after clinical diagnosis, self-complementary AAV9-CLN5 was injected into the brain ventricles of four 7-month-old affected sheep already showing early clinical signs in a second trial. This also halted disease progression beyond their natural lifespan. These findings demonstrate the efficacy of CLN5 gene therapy, using three different vector platforms, in a large animal model and, thus, the prognosis for human translation. Few treatments exist for the fatal inherited neurodegenerative disorder Batten disease. Here Mitchell et al. use in vivo methods to demonstrate that intracerebroventricular delivery of CLN5 gene therapy to sheep with a CLN5 form of Batten disease preserves brain structure and function and clinically stabilizes the disease
Mammalian Pumilio 2 regulates dendrite morphogenesis and synaptic function
In Drosophila, Pumilio (Pum) is important for neuronal homeostasis as well as learning and memory. We have recently characterized a mammalian homolog of Pum, Pum2, which is found in discrete RNA-containing particles in the somatodendritic compartment of polarized neurons. In this study, we investigated the role of Pum2 in developing and mature neurons by RNA interference. In immature neurons, loss of Pum2 led to enhanced dendritic outgrowth and arborization. In mature neurons, Pum2 down-regulation resulted in a significant reduction in dendritic spines and an increase in elongated dendritic filopodia. Furthermore, we observed an increase in excitatory synapse markers along dendritic shafts. Electrophysiological analysis of synaptic function of neurons lacking Pum2 revealed an increased miniature excitatory postsynaptic current frequency. We then identified two specific mRNAs coding for a known translational regulator, eIF4E, and for a voltage-gated sodium channel, Scn1a, which interacts with Pum2 in immunoprecipitations from brain lysates. Finally, we show that Pum2 regulates translation of the eIF4E mRNA. Taken together, our data reveal a previously undescribed role for Pum2 in dendrite morphogenesis, synapse function, and translational control
Inflammation in epileptogenesis after traumatic brain injury
BACKGROUND: Epilepsy is a common and debilitating consequence of traumatic brain injury (TBI). Seizures contribute to progressive neurodegeneration and poor functional and psychosocial outcomes for TBI survivors, and epilepsy after TBI is often resistant to existing anti-epileptic drugs. The development of post-traumatic epilepsy (PTE) occurs in a complex neurobiological environment characterized by ongoing TBI-induced secondary injury processes. Neuroinflammation is an important secondary injury process, though how it contributes to epileptogenesis, and the development of chronic, spontaneous seizure activity, remains poorly understood. A mechanistic understanding of how inflammation contributes to the development of epilepsy (epileptogenesis) after TBI is important to facilitate the identification of novel therapeutic strategies to reduce or prevent seizures. BODY: We reviewed previous clinical and pre-clinical data to evaluate the hypothesis that inflammation contributes to seizures and epilepsy after TBI. Increasing evidence indicates that neuroinflammation is a common consequence of epileptic seizure activity, and also contributes to epileptogenesis as well as seizure initiation (ictogenesis) and perpetuation. Three key signaling factors implicated in both seizure activity and TBI-induced secondary pathogenesis are highlighted in this review: high-mobility group box protein-1 interacting with toll-like receptors, interleukin-1β interacting with its receptors, and transforming growth factor-β signaling from extravascular albumin. Lastly, we consider age-dependent differences in seizure susceptibility and neuroinflammation as mechanisms which may contribute to a heightened vulnerability to epileptogenesis in young brain-injured patients. CONCLUSION: Several inflammatory mediators exhibit epileptogenic and ictogenic properties, acting on glia and neurons both directly and indirectly influence neuronal excitability. Further research is required to establish causality between inflammatory signaling cascades and the development of epilepsy post-TBI, and to evaluate the therapeutic potential of pharmaceuticals targeting inflammatory pathways to prevent or mitigate the development of PTE