845 research outputs found

    Discussion of the Electromotive Force Terms in the Model of Parker-unstable Galactic Disks with Cosmic Rays and Shear

    Get PDF
    We analyze the electromotive force (EMF) terms and basic assumptions of the linear and nonlinear dynamo theories in our three-dimensional (3D) numerical model of the Parker instability with cosmic rays and shear in a galactic disk. We also apply the well known prescriptions of the EMF obtained by the nonlinear dynamo theory (Blackman & Field 2002 and Kleeorin et al. 2003) to check if the EMF reconstructed from their prescriptions corresponds to the EMF obtained directly from our numerical models. We show that our modeled EMF is fully nonlinear and it is not possible to apply any of the considered nonlinear dynamo approximations due to the fact that the conditions for the scale separation are not fulfilled.Comment: 15 pages, 12 figure

    The need for improved management of the subsurface

    Get PDF
    The subsurface is used intensively to support economic stability and growth. Human interaction with the shallow subsurface ranges from exploitation of resources, accommodation of utilities, harnessing of energy (ground source heat pumps) and storage of waste. Current practice of managing these shallow subsurface zones is far from ideal. Many subsurface interventions are preceded by feasibility studies, predictive models or investigative measures to mitigate risks or predict the impacts of the work. However, the complex interactions between the anthropogenic structures and natural processes mean that a holistic impact assessment is often not achievable. By integrating these subsurface infrastructures within three dimensional framework models, a comprehensive assessment of the potential hazards in these shallow subsurface environments may be made. Some Geological Survey Organizations (GSOs) are currently developing subsurface management systems that will aid decision making in the shallow subsurface [1]. The British Geological Survey (BGS) is developing an open Environmental Modeling Platform [2] to provide the data standards and applications to link models, numerical simulations and ultimately socio-economic models so as to generate predictive responses to questions concerning sustainable us of the subsurface

    Matched filters for coalescing binaries detection on massively parallel computers

    Get PDF
    We discuss some computational problems associated to matched filtering of experimental signals from gravitational wave interferometric detectors in a parallel-processing environment. We then specialize our discussion to the use of the APEmille and apeNEXT processors for this task. Finally, we accurately estimate the performance of an APEmille system on a computational load appropriate for the LIGO and VIRGO experiments, and extrapolate our results to apeNEXT.Comment: 19 pages, 6 figure

    Comparison of sea-ice freeboard distributions from aircraft data and cryosat-2

    Get PDF
    The only remote sensing technique capable of obtain- ing sea-ice thickness on basin-scale are satellite altime- ter missions, such as the 2010 launched CryoSat-2. It is equipped with a Ku-Band radar altimeter, which mea- sures the height of the ice surface above the sea level. This method requires highly accurate range measure- ments. During the CryoSat Validation Experiment (Cry- oVEx) 2011 in the Lincoln Sea, Cryosat-2 underpasses were accomplished with two aircraft, which carried an airborne laser-scanner, a radar altimeter and an electro- magnetic induction device for direct sea-ice thickness re- trieval. Both aircraft flew in close formation at the same time of a CryoSat-2 overpass. This is a study about the comparison of the sea-ice freeboard and thickness dis- tribution of airborne validation and CryoSat-2 measure- ments within the multi-year sea-ice region of the Lincoln Sea in spring, with respect to the penetration of the Ku- Band signal into the snow

    Magnetic field generation in fully convective rotating spheres

    Full text link
    Magnetohydrodynamic simulations of fully convective, rotating spheres with volume heating near the center and cooling at the surface are presented. The dynamo-generated magnetic field saturates at equipartition field strength near the surface. In the interior, the field is dominated by small-scale structures, but outside the sphere by the global scale. Azimuthal averages of the field reveal a large-scale field of smaller amplitude also inside the star. The internal angular velocity shows some tendency to be constant along cylinders and is ``anti-solar'' (fastest at the poles and slowest at the equator).Comment: 12 pages, 11 figures, 2 tables, to appear in the 10 Feb issue of Ap

    The inverse cascade and nonlinear alpha-effect in simulations of isotropic helical hydromagnetic turbulence

    Full text link
    A numerical model of isotropic homogeneous turbulence with helical forcing is investigated. The resulting flow, which is essentially the prototype of the alpha^2 dynamo of mean-field dynamo theory, produces strong dynamo action with an additional large scale field on the scale of the box (at wavenumber k=1; forcing is at k=5). This large scale field is nearly force-free and exceeds the equipartition value. As the magnetic Reynolds number R_m increases, the saturation field strength and the growth rate of the dynamo increase. However, the time it takes to built up the large scale field from equipartition to its final super-equipartition value increases with magnetic Reynolds number. The large scale field generation can be identified as being due to nonlocal interactions originating from the forcing scale, which is characteristic of the alpha-effect. Both alpha and turbulent magnetic diffusivity eta_t are determined simultaneously using numerical experiments where the mean-field is modified artificially. Both quantities are quenched in a R_m-dependent fashion. The evolution of the energy of the mean field matches that predicted by an alpha^2 dynamo model with similar alpha and eta_t quenchings. For this model an analytic solution is given which matches the results of the simulations. The simulations are numerically robust in that the shape of the spectrum at large scales is unchanged when changing the resolution from 30^3 to 120^3 meshpoints, or when increasing the magnetic Prandtl number (viscosity/magnetic diffusivity) from 1 to 100. Increasing the forcing wavenumber to 30 (i.e. increasing the scale separation) makes the inverse cascade effect more pronounced, although it remains otherwise qualitatively unchanged.Comment: 21 pages, 26 figures, ApJ (accepted

    Angular dependence of domain wall resistivity in SrRuO3_{{\bf 3}} films

    Full text link
    SrRuO3{\rm SrRuO_3} is a 4d itinerant ferromagnet (Tc_{c} \sim 150 K) with stripe domain structure. Using high-quality thin films of SrRuO3_{3} we study the resistivity induced by its very narrow (3\sim 3 nm) Bloch domain walls, ρDW\rho_{DW} (DWR), at temperatures between 2 K and Tc_{c} as a function of the angle, θ\theta , between the electric current and the ferromagnetic domains walls. We find that ρDW(T,θ)=sin2θρDW(T,90)+B(θ)ρDW(T,0)\rho_{DW}(T,\theta)=\sin^2\theta \rho_{DW}(T,90)+B(\theta)\rho_{DW}(T,0) which provides the first experimental indication that the angular dependence of spin accumulation contribution to DWR is sin2θ\sin^2\theta. We expect magnetic multilayers to exhibit a similar behavior.Comment: 5 pages, 5 figure

    Preoperative and perioperative use of levosimendan in cardiac surgery: European expert opinion

    Get PDF
    In cardiac surgery, postoperative low cardiac output has been shown to correlate with increased rates of organ failure and mortality. Catecholamines have been the standard therapy for many years, although they carry substantial risk for adverse cardiac and systemic effects, and have been reported to be associated with increased mortality. On the other hand, the calcium sensitiser and potassium channel opener levosimendan has been shown to improve cardiac function with no imbalance in oxygen consumption, and to have protective effects in other organs. Numerous clinical trials have indicated favourable cardiac and non-cardiac effects of preoperative and perioperative administration of levosimendan. A panel of 27 experts from 18 countries has now reviewed the literature on the use of levosimendan in on-pump and off-pump coronary artery bypass grafting and in heart valve surgery. This panel discussed the published evidence in these various settings, and agreed to vote on a set of questions related to the cardioprotective effects of levosimendan when administered preoperatively, with the purpose of reaching a consensus on which patients could benefit from the preoperative use of levosimendan and in which kind of procedures, and at which doses and timing should levosimendan be administered. Here, we present a systematic review of the literature to report on the completed and ongoing studies on levosimendan, including the newly commenced LEVO-CTS phase III study (NCT02025621), and on the consensus reached on the recommendations proposed for the use of preoperative levosimendan

    Resistance of a domain wall in the quasiclassical approach

    Full text link
    Starting from a simple microscopic model, we have derived a kinetic equation for the matrix distribution function. We employed this equation to calculate the conductance GG in a mesoscopic F'/F/F' structure with a domain wall (DW). In the limit of a small exchange energy JJ and an abrupt DW, the conductance of the structure is equal to G2d=4σσ/(σ+σ)LG_{2d}=4\sigma_{\uparrow}\sigma_{\downarrow }/(\sigma_{\uparrow}+\sigma_{\downarrow})L. Assuming that the scattering times for electrons with up and down spins are close to each other we show that the account for a finite width of the DW leads to an increase in this conductance. We have also calculated the spatial distribution of the electric field in the F wire. In the opposite limit of large JJ (adiabatic variation of the magnetization in the DW) the conductance coincides in the main approximation with the conductance of a single domain structure G1d=(σ+σ)/L% G_{1d}=(\sigma_{\uparrow}+\sigma_{\downarrow})/L. The account for rotation of the magnetization in the DW leads to a negative correction to this conductance. Our results differ from the results in papers published earlier.Comment: 11 pages; replaced with revised versio
    corecore