1,671 research outputs found
Dangerous dietary supplements: Garcinia cambogia-associated hepatic failure requiring transplantation.
Commercial dietary supplements are marketed as a panacea for the morbidly obese seeking sustainable weight-loss. Unfortunately, many claims cited by supplements are unsupported and inadequately regulated. Most concerning, however, are the associated harmful side effects, often unrecognized by consumers. Garcinia cambogia extract and Garcinia cambogia containing products are some of the most popular dietary supplements currently marketed for weight loss. Here, we report the first known case of fulminant hepatic failure associated with this dietary supplement. One active ingredient in this supplement is hydroxycitric acid, an active ingredient also found in weight-loss supplements banned by the Food and Drug Administration in 2009 for hepatotoxicity. Heightened awareness of the dangers of dietary supplements such as Garcinia cambogia is imperative to prevent hepatoxicity and potential fulminant hepatic failure in additional patients
A geometric bound on F-term inflation
We discuss a general bound on the possibility to realise inflation in any
minimal supergravity with F-terms. The derivation crucially depends on the
sGoldstini, the scalar field directions that are singled out by spontaneous
supersymmetry breaking. The resulting bound involves both slow-roll parameters
and the geometry of the K\"ahler manifold of the chiral scalars. We analyse the
inflationary implications of this bound, and in particular discuss to what
extent the requirements of single field and slow-roll can both be met in F-term
inflation.Comment: 14 pages, improved analysis, references added, matches published
versio
Effects of heavy modes on vacuum stability in supersymmetric theories
We study the effects induced by heavy fields on the masses of light fields in
supersymmetric theories, under the assumption that the heavy mass scale is much
higher than the supersymmetry breaking scale. We show that the square-masses of
light scalar fields can get two different types of significant corrections when
a heavy multiplet is integrated out. The first is an indirect level-repulsion
effect, which may arise from heavy chiral multiplets and is always negative.
The second is a direct coupling contribution, which may arise from heavy vector
multiplets and can have any sign. We then apply these results to the sGoldstino
mass and study the implications for the vacuum metastability condition. We find
that the correction from heavy chiral multiplets is always negative and tends
to compromise vacuum metastability, whereas the contribution from heavy vector
multiplets is always positive and tends on the contrary to reinforce it. These
two effects are controlled respectively by Yukawa couplings and gauge charges,
which mix one heavy and two light fields respectively in the superpotential and
the Kahler potential. Finally we also comment on similar effects induced in
soft scalar masses when the heavy multiplets couple both to the visible and the
hidden sector.Comment: LaTex, 24 pages, no figures; v2 some comments and references adde
Minimal Stability in Maximal Supergravity
Recently, it has been shown that maximal supergravity allows for
non-supersymmetric AdS critical points that are perturbatively stable. We
investigate this phenomenon of stability without supersymmetry from the
sGoldstino point of view. In particular, we calculate the projection of the
mass matrix onto the sGoldstino directions, and derive the necessary conditions
for stability. Indeed we find a narrow window allowing for stable SUSY breaking
points. As a by-product of our analysis, we find that it seems impossible to
perturb supersymmetric critical points into non-supersymmetric ones: there is a
minimal amount of SUSY breaking in maximal supergravity.Comment: 27 pages, 1 figure. v2: two typos corrected, published versio
A no-go for no-go theorems prohibiting cosmic acceleration in extra dimensional models
A four-dimensional effective theory that arises as the low-energy limit of
some extra-dimensional model is constrained by the higher dimensional Einstein
equations. Steinhardt & Wesley use this to show that accelerated expansion in
our four large dimensions can only be transient in a large class of
Kaluza-Klein models that satisfy the (higher dimensional) null energy condition
[1]. We point out that these no-go theorems are based on a rather ad-hoc
assumption on the metric, without which no strong statements can be made.Comment: 20 page
Metastable de Sitter vacua in N=2 to N=1 truncated supergravity
We study the possibility of achieving metastable de Sitter vacua in general
N=2 to N=1 truncated supergravities without vector multiplets, and compare with
the situations arising in N=2 theories with only hypermultiplets and N=1
theories with only chiral multiplets. In N=2 theories based on a quaternionic
manifold and a graviphoton gauging, de Sitter vacua are necessarily unstable,
as a result of the peculiar properties of the geometry. In N=1 theories based
on a Kahler manifold and a superpotential, de Sitter vacua can instead be
metastable provided the geometry satisfies some constraint and the
superpotential can be freely adjusted. In N=2 to N=1 truncations, the crucial
requirement is then that the tachyon of the mother theory be projected out from
the daughter theory, so that the original unstable vacuum is projected to a
metastable vacuum. We study the circumstances under which this may happen and
derive general constraints for metastability on the geometry and the gauging.
We then study in full detail the simplest case of quaternionic manifolds of
dimension four with at least one isometry, for which there exists a general
parametrization, and study two types of truncations defining Kahler
submanifolds of dimension two. As an application, we finally discuss the case
of the universal hypermultiplet of N=2 superstrings and its truncations to the
dilaton chiral multiplet of N=1 superstrings. We argue that de Sitter vacua in
such theories are necessarily unstable in weakly coupled situations, while they
can in principle be metastable in strongly coupled regimes.Comment: 40 pages, no figure
Metastable supergravity vacua with F and D supersymmetry breaking
We study the conditions under which a generic supergravity model involving
chiral and vector multiplets can admit viable metastable vacua with
spontaneously broken supersymmetry and realistic cosmological constant. To do
so, we impose that on the vacuum the scalar potential and all its first
derivatives vanish, and derive a necessary condition for the matrix of its
second derivatives to be positive definite. We study then the constraints set
by the combination of the flatness condition needed for the tuning of the
cosmological constant and the stability condition that is necessary to avoid
unstable modes. We find that the existence of such a viable vacuum implies a
condition involving the curvature tensor for the scalar geometry and the charge
and mass matrices for the vector fields. Moreover, for given curvature, charges
and masses satisfying this constraint, the vector of F and D auxiliary fields
defining the Goldstino direction is constrained to lie within a certain domain.
The effect of vector multiplets relative to chiral multiplets is maximal when
the masses of the vector fields are comparable to the gravitino mass. When the
masses are instead much larger or much smaller than the gravitino mass, the
effect becomes small and translates into a correction to the effective
curvature. We finally apply our results to some simple classes of examples, to
illustrate their relevance.Comment: 40 pages; v2 some clarifications added in the introduction; v3 some
typos correcte
Moduli stabilization with positive vacuum energy
We study the effect of anomalous U(1) gauge groups in string theory
compactification with fluxes. We find that, in a gauge invariant formulation,
consistent AdS vacua appear breaking spontaneously supergravity. Non vanishing
D-terms from the anomalous symmetry act as an uplifting potential and could
allow for de Sitter vacua. However, we show that in this case the gravitino is
generically (but not always) much heavier than the electroweak scale. We show
that alternative uplifting scheme based on corrections to the Kahler potential
can be compatible with a gravitino mass in the TeV range.Comment: 20 pages, 1 figur
Scalar geometry and masses in Calabi-Yau string models
We study the geometry of the scalar manifolds emerging in the no-scale sector
of Kahler moduli and matter fields in generic Calabi-Yau string
compactifications, and describe its implications on scalar masses. We consider
both heterotic and orientifold models and compare their characteristics. We
start from a general formula for the Kahler potential as a function of the
topological compactification data and study the structure of the curvature
tensor. We then determine the conditions for the space to be symmetric and show
that whenever this is the case the heterotic and the orientifold models give
the same scalar manifold. We finally study the structure of scalar masses in
this type of geometries, assuming that a generic superpotential triggers
spontaneous supersymmetry breaking. We show in particular that their behavior
crucially depends on the parameters controlling the departure of the geometry
from the coset situation. We first investigate the average sGoldstino mass in
the hidden sector and its sign, and study the implications on vacuum
metastability and the mass of the lightest scalar. We next examine the soft
scalar masses in the visible sector and their flavor structure, and study the
possibility of realizing a mild form of sequestering relying on a global
symmetry.Comment: 36 pages, no figure
- …
