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1 Introduction

Three decades after its inception, inflation remains our best theoretical candidate to de-

scribe the very early Universe [1, 2]. It naturally explains the high degree of homogeneity

at large scales in the present Universe, thus solving classical problems associated with

e.g. the horizon of CMB beyond patches of 1 degree and the nearly flat spatial geometry.

In addition to this homogeneity, it also provides a compelling explanation for the small

inhomogeneities in both the CMB and the LSS. The interpretation that these have orig-

inated from quantum fluctuations during inflation has been experimentally confirmed by

the power spectrum of the CMB [3]. As a result, we know the inflationary fluctuations are

to a large extent Gaussian and almost scale invariant. In terms of inflationary models, all

observations so far are perfectly consistent with the simplest class of slow-roll and single

field. The first constraint implies that the two slow-roll parameters,

ǫ ≡ GIJ DIV DJV

2 ℓ2p V
, η ≡ min. eigenvalue

(GIK DKDJV

ℓ2p V

)

, (1.1)

are both much smaller than unity.1 Indeed, the observed value of

ns = 1− 6ǫ+ 2η = 0.968± 0.012 , (1.2)

is consistent with percent level values for both slow-roll parameters. Future experiments

such as Planck [4] will measure the temperature anisotropies in far greater detail, and hence

could observe deviations from this simple model, e.g. by measuring non-Gaussianities.

In view of the phenomenological success of the inflationary hypothesis, it is natural to

look for an embedding of this theory into a more fundamental theory of quantum gravity,

such as string theory. Indeed in recent years a large research effort has been devoted to find-

ing realisations of inflation in string theory. Despite a number of interesting and influential

examples, this search is somewhat hampered by our limited knowledge of the contours of

1In what follows we use ℓ2p = 1/M2

p = 8πGN .
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the playground: it remains unclear to this day which string theory compactifications are

admissible, and what their resulting features are.

A fruitful approach has been to limit oneself to a subset of all possibilities that we

do understand. One example is D-brane inflation (see e.g. [5] for a review with several

references), which has seen a lot of progress in the last years in the context of type IIB

flux compactifications, where moduli stabilisation is under good theoretical control. Much

effort has been put in computing the scalar potential of the D3-brane position, which is

responsible to drive inflation. Another approach within type IIB flux compactifications has

been to study modular inflation in the Large Volume scenario [6]. Here the scalar potential

responsible to drive inflation can be explicitely computed and inflation realised [7].

Another example is provided by the analysis of the inflationary properties of flux

compactifications of type IIA string theory. Restricting oneself to Calabi-Yau compact-

ifications with only standard NS-NS 3-form flux, R-R fluxes, D6-branes and O6-planes

at large volume and small string coupling, one can stabilise the moduli at the classical

level [8]. However, such constructions always satisfy a very simple and nevertheless strong

lower bound on the first slow-roll parameter [9]:

ǫ ≥ 27/13 , (1.3)

violating the slow-roll assumption. Surprisingly, in order to derive this lower bound, only

two of the total set of moduli fields had to be taken into account: one finds violation of the

slow-roll condition already in the projection onto the two-dimensional plane spanned by the

dilaton and the volume modulus. Based solely on the dynamics of these two fields, it has

been argued that cosmological observations have ruled out geometric IIA compactifications.

A possible way to circumvent this no-go theorem would be to replace the six-torus by

negatively curved internal manifolds.

In this paper we want to extend the above analyses in a different direction, namely

that of minimal supergravity with an F-term scalar potential in terms of an arbitrary

holomorphic superpotential. This is a very general class of models in which it is natural

to embed inflation. The superpotential induces a potential energy for the Kähler fields,

hence allowing for the possibility to realise inflation. Moreover, as the field content of

minimal supergravity can contain an arbitrary number of chiral multiplets, it leaves room

for all the subtleties of multi-field inflation, curvatons, isocurvature perturbations and non-

Gaussianities, to name a few. Nevertheless, we will demonstrate that there is a very strong

bound on such theories in order to satisfy (1.2).

Instead of taking on this problem head-on, or statistically sample a large number of

possibilities as in [10], we derive an analytic bound by employing a simplification analogous

to the two-dimensional projection of [9]. However, in our case the only directions out of

all Kähler fields that are singled out are the so-called sGoldstini directions. These are the

scalar partners of the would-be Goldstino that are eaten up by the gravitino in the process

of supersymmetry breaking. Therefore, it is supersymmetry breaking that dynamically

determines a number of preferred directions in moduli space.

It has been shown in various supergravity contexts that the sGoldstini directions are

very efficient in tracing possible scalar instabilities [11–13]. For this reason, one can use

– 2 –
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the sGoldstini directions to derive an upper bound on the second slow-roll parameter η.

This slow-roll condition on F-term supergravity was discussed in [14]. Note that it does not

require the sGoldstini and inflaton directions to coincide. We demonstrate that additionally

imposing the condition of effective single field inflation leads to a much stronger bound.

We discuss the inflationary implications of this bound and see to what extent it allows for

e.g. single field and slow-roll inflation. Intriguingly, we also find the necessity to introduce a

negatively curved manifold as in [9], but now as the scalar manifold spanned by the Kähler

fields instead of the internal compactification manifold. We will argue that this rules out

the possibility of small field inflation.

The organisation of this paper is as follows. In section 2 we derive the general bound

on the inflationary slow-roll parameters for any F-term supergravity. Subsequently we

analyse the inflationary implications of this bound in section 3. Section 4 contains our

concluding remarks.

Note added. Upon completion of this manuscript we became aware of the preprint [15]

where related issues regarding the possibility to realise inflation with only the sGoldstino

field are discussed. We briefly comment on the relation to our findings in the conclusions.

It would be interesting to compare both papers in more detail.

2 Minimal supergravity with F-terms

The Lagrangian. The field content of N = 1 supergravity is given by a graviton eµ
a and

a gravitino ψµ coupled to n chiral supermultiplets. Each of these is composed by a chiral

spin-1/2 field χ and a complex field φ. It has been shown that the φi, i = 1, . . . n fields

organise themselves in a Kähler-Hodge manifold. This geometric structure is a fundamental

ingredient in building the theory.

The Lagrangian is given by (modulo four fermion terms)

e−1 L = Lkin + Lf-m − V ,

where

Lkin = +
1

2ℓ2p
R− 1

2
ψ̄µ γ

µνρDµψρ − Gī ∂µφ
i ∂µφ̄̄+ (2.1)

+
ℓ2p
2
Gī

(

χ̄i γµDµχ̄
̄ + χ̄̄ γµDµχ

i
)

+
ℓ2p√
2
Gī

(

ψ̄µγ
ν∂ν φ̄

̄ γµ χi + h.c.
)

.

The gravitino ψµ is a Majorana spinor while χi is a left-handed spinor:

PL χ
i = 1

2 (1l + γ5)χ
i = χi .

The fermionic mass terms are given by

Lf-m = +
ℓ2p
2
eℓ

2
p
K

2 W ψ̄µPR γ
µνψν +

ℓ2p√
2
eℓ

2
p
K

2 DiW ψ̄µ γ
µχi −

ℓ2p
2
eℓ

2
p
K

2 DiDjW χ̄iχj + h.c. ,

(2.2)

– 3 –
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and the scalar potential is given by

V = −3 ℓ2pe
ℓ2pK WW + eℓ

2
pK GīDiWD̄W . (2.3)

Every derivative is covariantised w.r.t. Kähler transformations besides local Lorentz trans-

formations. Whenever a derivative acts on a quantity with Kähler indices (i, ı̄) it needs to

be further covariantised w.r.t. diffeomorphisms on the Kähler manifold.2

The Lagrangian is therefore fully specified by the following two quantities:

• K = K(φi, φ̄ı̄) is the Kähler potential and, by definition, the metric on the Kähler

manifold is given by ∂i∂̄K ≡ Gī. It has mass dimension two while the scalar fields

φi are normalised to the Planck mass.

• W = W(φi) is the holomorphic superpotential, which has mass dimension three.

The scalar potential (2.3) of any F-term supergravity is made up of two opposing contribu-

tions. The negative definite term, related to the superpotential itself, sets the AdS scale.

In contrast, the positive definite term is related to the first covariant derivatives of the

superpotential DiW. The latter quantities are referred to as F-terms and play an essential

role as the order parameter for supersymmetry breaking.

Scalar mass matrix. The standard way of carrying out the analysis of this class of

supergravity theories is by considering the following real combination3

G = K + ℓ−2
p ln

∣

∣ℓ3pW
∣

∣

2
. (2.4)

This function is by construction Kähler invariant and hence one does not have to worry

about covariantising derivatives w.r.t. this kind of transformations. In terms of this function

the scalar potential reads

V = ℓ−4
p eℓ

2
pG
(

ℓ2p Gī Gi Ḡ − 3
)

, (2.5)

where Gi denotes the simple partial derivative of G w.r.t. φi. The first derivative is given by

∂iV = ℓ2p Gi V + ℓ−2
p eℓ

2
pG

(

Gi + Gj DiGj

)

. (2.6)

The second derivatives are thus

DiDjV = ℓ2p
(

GiDjV + Gj DiV
)

+ ℓ2p
(

DiGj + ℓ2p GiGj

)

V

+ ℓ−2
p eℓ

2
pG

(

2D(iGj) + Gk DiDjGk

)

,

Dı̄DjV = ℓ2p
(

Gı̄DjV + Gj Dı̄V
)

+ ℓ2p
(

Gı̄j − ℓ2p Gı̄Gj

)

V

+ ℓ−2
p eℓ

2
pG

[

Gı̄j +
(

Dı̄Gk
) (

DjGk

)

−Rjı̄kl̄ GkG l̄
]

. (2.7)

2More on our conventions and a detailed derivation of (2.1)–(2.3) can be found in [16].
3As one can see from (2.4), the potential G is ill-defined whenever W = 0. Stricly speaking, our analysis

therefore no longer applies in this case. Nevertheless, we have explicitly checked that also when W = 0 the

same conclusions, and in particular the bound (2.15), still hold. An interesting example of such a model

is [27, 28]. We thank Renata Kallosh for correspondence on this point.

– 4 –
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Using these derivatives we are able to construct the squared mass matrix for the scalar

fields at any point in field space. It is given by

m2 I
J =

[

m2 i
j m

2 i
̄

m2 ı̄
j m

2 ı̄
̄

]

=

[

Gik̄ Dk̄DjV Gik̄ Dk̄D̄V

G ı̄k DkDjV G ı̄k DkD̄V

]

. (2.8)

where we have used the collective index I = (i, ı̄).

sGoldstino directions. Spontaneous supersymmetry breaking is induced by DiW. We

consider a configuration of the theory in which supersymmetry is broken: DiW 6= 0. We see

from (2.2) that the mixing between the gravitino and the chiral spin-1/2 fields is sourced

exactly by the order parameter of supersymmetry breaking and is encoded in the term

ℓ2p√
2
eℓ

2
p
K

2 DiW ψ̄µ γ
µχi = − 1

ℓp
ψ̄µ γ

µ
(

PLζ
)

,

where we have defined a linear combination of spin-1/2 fields

PLζ = −
ℓ3p√
2
eℓ

2
p
K

2 DiW χi . (2.9)

This field is usually called the Goldstino. Indeed, it is possible to show that the dynamics

of the gravitino can be disentangled from that of the spin-1/2 fields, by performing a

supersymmetry transformation in which the supersymmetry parameter ε is proportional

to the Goldstino. Going to the so-called unitary gauge it is possible to eliminate from the

spectrum the Goldstino. This is the analogue of the Higgs mechanism for spontaneous

gauge symmetry breaking, often called super-Higgs mechanism (see for instance [17]). The

missing degrees of freedom are absorbed by the gravitino.

We now consider the supersymmetry variation of the Goldstino field. Apart from terms

involving fermions, it is given by

δ
(

PLζ
)

= −
ℓ3p
2
eℓ

2
p
K

2 DiW
1

ℓp
γµ ∂µφ

i
(

PRε
)

+
ℓ2p
2
eℓ

2
pK GīDiWD̄W

(

PLε
)

= −
ℓ3p
2
eℓ

2
p
K

2 DiW
1

ℓp
γµ∂µφ

i
(

PRε
)

+
ℓ2p
2
V+

(

PLε
)

,

where in the second term we recognise the positive definite part of the scalar potential,

denoted by V+. In the first term the complex quantity

ℓ3p
2
eℓ

2
p
K

2 DiW

defines, for a fixed value of φi, a direction in the scalar manifold. After a Kähler transfor-

mation, it can be written as

ℓ2p
2
eℓ

2
p
G

2 Gi .

– 5 –
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We normalise the direction to a unit vector taking

gi =
Gi

√

GjGj
. (2.10)

At this point we would like to point out a slight subtlety concerning the terminology

of the Goldstino and sGoldstini. For cosmological purposes, in which one usually consid-

ers time-dependent scalar fields, the definition of the linear combination of spin-1/2 fields

which gives the Goldstino is slightly different from what is discussed above. This is mainly

due to the presence of couplings of the schematic form ψ̄(∂φ)χ in (2.1). In that case a more

careful analysis applies which can be found for instance in [16]. Therefore, referring to the

gi directions as the sGoldstini is a small abuse of notation in the time-dependent case. Nev-

ertheless, these directions can be defined on the scalar manifold as long as supersymmetry

is broken and we will use this in what follows.

A geometric bound. In this section we follow the steps of [14] and consider the pro-

jection of the mass matrix on the direction specified by gi. For any complex quantity Ui

with Ui Ū
i = 1 we could define two dinstinct real orthonormal directions (Ui, Ūı̄)/

√
2 and

(i Ui, −i Ūı̄)/
√
2. The same could be done with the sGoldstino direction gi. Consider now

the projection of the mass matrix along these directions

1

2

[

gi gı̄

]

[

m2 i
j m

2 i
̄

m2 ı̄
j m

2 ı̄
̄

] [

gj

ḡ

]

,
1

2

[

−gi gı̄
]

[

m2 i
j m

2 i
̄

m2 ı̄
j m

2 ı̄
̄

] [

−gj
ḡ

]

,

If we take the averaged sum of these two quantities and normalise it w.r.t. the potential

we are left with

ηsG ≡ gı̄gj Dı̄DjV

ℓ2p V

=
2

3γ
+

4√
3

1√
1 + γ

ℜ
{

gi
DiV

V

}

+
γ

1 + γ

Gı̄jDı̄V DjV

ℓ2p V
2

− 1 + γ

γ
R̃ , (2.11)

where we have defined

γ =
ℓ4p V

3 eℓ
2
pG

=
ℓ2p V

3 |m3/2|2
, (2.12)

withm3/2 being the gravitino mass, ℜ denotes the real part and R̃ is the sectional curvature

related to the plane defined by gi on the scalar manifold

R̃ ≡
Rı̄jk̄l g

ı̄gjgk̄gl

ℓ2p
. (2.13)

Notice that ηsG is obtained from the averaged sum of two masses. We will come back to

this point in the next section. In [14] ηsG is used to obtain a bound on the second slow-roll

parameter η depending on the first slow-roll parameter ǫ, γ and the sectional curvature R̃.

– 6 –
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In order to get the bound we first notice that, for any unit vector UI = (Ui, Ūı̄)/
√
2 with

Ui Ū
i = 1, we have

η ≤ UI m
2 I

J U
J

V
,

∣

∣

∣

∣

Ū i DiV

V

∣

∣

∣

∣

≤ √
ǫ . (2.14)

Combining this information and pluging it into (2.11), we obtain

η ≤ ηsG ≤ 2

3γ
+

4√
3

1√
1 + γ

√
ǫ+

γ

1 + γ
ǫ− 1 + γ

γ
R̃ . (2.15)

We will be interested in the last inequality of the chain (2.15), namely the one which relates

ηsG to ǫ and R̃. This bound is very interesting as it relates the slow-roll parameters to the

geometry of the scalar manifold. In the next section, after a small summary regarding all

the quantities appearing in (2.15), we analyse their inflationary implications.

3 Inflationary implications

In this section we discuss the implications of the geometric bound we derived above, (2.15).

In order to do that, we first recap the information contained in this bound and its physi-

cal meaning:

• γ is the ratio between the scalar potential and the gravitino mass (2.12). It tells one

which is the relative importance between the two contributions to the scalar potential.

If γ < 0 the scalar potential is dominated by the negative definite contribution. When

γ ∼ 0 the two terms are of the same order. Finally when γ > 0 the supersymmetry

breaking F-terms dominate over the AdS scale, leading to a positive scalar potential.

As we will find below, the bound (2.15) turns out to have two regimes. The first

one is where γ lies in between 0 and 4/3, corresponding to a gravitino mass that is

above the Hubble scale H: |m3/2|2 ≥ 3H2/4. The second possibility is when the

gravitino mass is below the Hubble scale, corresponding to γ > 4/3 or in other words

|m3/2|2 < 3H2/4. This is the natural scenario if the gravitino mass during inflation

does not differ very strongly from the present gravitino mass, which should be of the

order of 1TeV in order to address the hierarchy problem. We will assume that this is

the case in what follows, and show that the geometric bound poses strong constraints

in this regime.

• ηsG is the averaged sum of two scalar masses normalised to the value of the potential.

If we want to embed effectively single field inflation in F-term supergravity, one

can envision two extreme scenarios. In the first one, the inflaton is not one of the

sGoldstino directions. In this case, if we want the sGoldstino fields to be spectators

during inflation, their masses should be of order H or above and hence ηsG & 1. In

the other extreme scenario, the inflaton is one of the sGoldstino directions: this is

referred to as sGoldstino inflation (for recent analyses, see e.g. [15, 18–20]). Even in

this case ηsG should be of order 1/2 or larger, because the orthogonal sGoldstino field

– 7 –
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needs to be stabilised along the inflationary trajectory. The general case would be

in between these two possibilities, and therefore single field inflation always requires

ηsG & 1/2.

• ǫ is the generalisation of the first slow-roll parameter to the case of many scalar

fields. It is a measure of the sum of the squared velocity of all the fields. Despite the

multi-field generalisation, slow-roll inflation requires ǫ≪ 1.

• R̃ is the sectional curvature related to the plane identified by the sGoldstino direc-

tions. In general the Riemann tensor of a manifold is completely specified once all the

sectional curvatures are given. For our purposes it is sufficient to say that, if R̃ ∼ 1,

there are some components of the Riemann tensor which are of order ℓ−2
p and as a

consequence we are dealing with a strongly curved scalar manifold. In other words,

the scalar kinetic terms in (2.1) cannot be simply given by

−Gī ∂µφ
i ∂µφ̄̄ ≃ −

n
∑

i=1

∂µφ
i ∂µφ̄ı̄ ,

but one needs to take into account the presence of the Kähler metric. Therefore

canonical kinetic terms require R̃ = 0.

Let us now discuss the inflationary implications of the bound derived above. It will

turn out that, for inflationary scenarios with γ > 4/3, one can only impose consistently

two of the conditions {single field, slow-roll, canonical kinetic terms} together. On the

other hand, for inflationary models with 0 < γ ≤ 4/3, it might be possible to realise

the three conditions at the same time in some cases. Let us discuss the three possible

consistent combinations.

Slow-roll single field inflation. The first possibility consists of imposing the first

two conditions: slow-roll and effective single field inflation. In this case the geometric

bound (2.15) becomes

R̃ .
4− 3γ

6(1 + γ)
, (3.1)

and we see that the sectional curvature of the scalar manifold must be strictly negative for

γ > 4/3. In other words, slow-roll and single field inflation require us to have non-canonical

kinetic terms for the inflaton and all the scalar fields present. Moreover, the non-canonical

kinetic terms should correspond to a metric whose Riemann curvature has a number of

components which are negative and of order order one in Planck units. Note that this rules

out a number of examples discussed in [14].

The fact that non-canonical terms are required at any point in field space implies

that the full inflationary trajectory should extend to the point where these terms become

relevant — if this were not the case then inflation should proceed independent of these

terms, which we know is inconsistent with the bound (2.15). Therefore the requirement of

non-canonical kinetic terms, with corrections to the metric of order one in Planck units,

implies that we must have large field inflation. As a consequence, effectively single field

– 8 –
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and slow-roll cannot be realised in small field F-term inflation. Note that this statement

on the full inflationary trajectory follows from an analysis of the bound (2.15) for a single

point in field space.

There is a small caveat to this statement. Indeed R̃ is a specific sectional curvature

associated to the plane defined by the sGoldstino fields. By carefully constructing the

Kähler- and super-potential it is possible to obtain an inflationary trajectory along which

the inflaton is completely orthogonal to the sGoldstino fields (see e.g. [27, 28]). The latter

are stabilised and, even being R̃ 6= 0 still one can obtain canonical kinetic terms for the

inflaton allowing for small field inflation. The special features of this model provide an

escape from our conclusions. On the other hand, as long as there is a non-negligible

overlap between the inflaton and the sGoldstino fields along the inflationary path, our

analysis applies.

Observationally, the consequence of having large field inflation is the prediction that

tensor modes can be detectable. The argument proceeds via the Lyth bound [21], which

relates inflationary trajectories of order one in Planck units to a ratio r between tensor to

scalar perturbations of percent level. The latter corresponds to observable tensor modes,

which are therefore a prediction of F-term inflation.

Furthermore, the implications for the curvature perturbations in inflation with non-

standard kinetic terms have been studied largely in the literature, starting with the work

of Garriga-Mukhanov [22]. Writing the scalar part of the lagrangian as a general function

P (X,φ), with X = 1
2g

µν∂µφ∂νφ, we see that the kinetic term for the inflaton gives rise to

a linear function of X in the present case. Thus, using the results of [22], one sees that

the resulting perturbations coincide with the canonical case. In particular, the “speed of

sound” of the perturbations cs, equals the speed of light. In this case, possible departures

from the Gaussian spectrum in the equilateral configuration, parameterised by feqNL ∝ 1/c2s
are negligible [23, 24]. Moreover, as has been shown in [25], non-Gaussianities of the local

form f locNL, are suppressed by 1−ns for single field inflation. Thus in this case, one obtains

standard single field predictions for the scalar perturbations.

Finally we note from (3.1) that for the other regime with γ ≤ 4/3, which corresponds

to a gravitino mass equal to |m3/2|2 ≥ 3H2/4, canonical kinetic terms are possible.

Slow-roll with canonical kinetic terms. The next possibility is to impose slow-roll

inflation and canonically normalised fields. Thus the bound (2.15) becomes

ηsG ≤ 2

3γ
. (3.2)

This implies that for inflationary models with γ > 4/3, we have to consider multifield

inflation with canonical terms for all the fields. In this case, large non-Gaussianity can be

generated dynamically by inflation due to the interplay of all fields and large isocurvature

perturbations. Large non-Gaussianity of the local form f locNL generated during inflation has

been shown to be generically hard to achieve (for a review with several references see [26])

and is very much model dependent. Therefore, without knowledge on the form of the

potential, we can only conclude that potentially large non-Gaussianities due to multifield

dynamics could be generated in these type of models.

On the other hand, for γ ≤ 4/3 one can still realise single field inflation.
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Single field with canonical kinetic terms. The last possible combination is to impose

effective single field inflation with canonical kinetic terms. In this case, the geometric

bound (2.15) translates in a bound for ǫ:

√
ǫ ≥

√
1 + γ√
3γ

[

−2 +
√

2(1 + 3γ/4)
]

. (3.3)

In this case we see that for most values of γ > 4/3, slow roll inflation cannot be realised.

In particular, for γ ≫ 1 one finds ǫ & 1/2.

4 Conclusions

In this paper we have analysed the inflationary implications of the sGoldstino bound (2.15).

The derivation of this bound closely follows [14] and involves the sGoldstini, the two scalar

directions that have a special status due to supersymmetry breaking. Whereas the fo-

cus in [14] was on slow-roll, we extended the analysis with the possible requirements of

effectively single field and/or canonical kinetic terms.

Remarkably, under the assumption of a sub-Hubble gravitino mass, the combination

of the slow-roll and single field imposes a very strong constraint on F-term inflation. The

curvature of the Kähler manifold spanned by the chiral scalars necessarily includes neg-

ative components which are order one in Planck units. Only Kähler manifolds with this

property satisfy the necessary but not sufficient condition for slow-roll, single field inflation.

This rules out many of the examples considered in the literature, see e.g. [14]. Moreover,

as discussed in the previous section, this automatically implies that the full inflationary

trajectory will be in the large field class. A consequence is the generation of observable

tensor modes in the polarisation of the CMB.

In the very recent and related paper [15], a general analysis has been performed of

sGoldstino inflation, where it is assumed that the inflaton coincides with one of the sGold-

stini directions. It is very interesting to compare the findings of that paper to our results

above. First of all, we have verified that the two explicit trajectories presented in section

3.3 of [15] not only satisfy the bound (2.15), but actually saturate it. The latter can be

understood from the second inequality of (2.14), which reduces to an equality in the case

of one chiral multiplet. This is a general feature of sGoldstino inflation. Secondly, in the

set-up discussed in [15], it is claimed that large field inflation is impossible. Combined

with our geometric bound, this would completely rule out single field, slow-roll inflation

in such a scenario. It would clearly be worthwhile to deepen our understanding of these

restrictions arising from the sGoldstino sector.
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