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Abstract

We study the effects induced by heavy fields on the masses of light fields

in supersymmetric theories, under the assumption that the heavy mass

scale is much higher than the supersymmetry breaking scale. We show

that the square-masses of light scalar fields can get two different types

of significant corrections when a heavy multiplet is integrated out. The

first is an indirect level-repulsion effect, which may arise from heavy

chiral multiplets and is always negative. The second is a direct cou-

pling contribution, which may arise from heavy vector multiplets and

can have any sign. We then apply these results to the sGoldstino mass

and study the implications for the vacuum metastability condition. We

find that the correction from heavy chiral multiplets is always negative

and tends to compromise vacuum metastability, whereas the contribu-

tion from heavy vector multiplets is always positive and tends on the

contrary to reinforce it. These two effects are controlled respectively

by Yukawa couplings and gauge charges, which mix one heavy and two

light fields respectively in the superpotential and the Kähler potential.

Finally we also comment on similar effects induced in soft scalar masses

when the heavy multiplets couple both to the visible and the hidden

sector.



1 Introduction

In supersymmetric theories, vacua that preserve supersymmetry are automatically

stable, whereas vacua that break supersymmetry are not guaranteed to be stable. In

order to assess stability, one then has to study the mass matrix of scalar fluctuations

around the vacuum and check that it is positive definite. It was however shown in

[1, 2, 3] (see also [4] for a related analysis), by looking at the sGoldstino direction,

that there exists a simple necessary condition for metastability depending on the

sectional curvature of the scalar manifold along the supersymmetry breaking direc-

tion. Moreover, it has been further argued in [5, 6] that this condition becomes also

sufficient if for a given Kähler potential K one allows the superpotential W to be

adjusted. These results are quite helpful for discriminating between theories where

metastable vacua may exist and theories where they cannot exist, by looking only

at K and not at W . A comprehensive review of these results and some extensions

of them within rigid supersymmetry can be found in [7].

In some cases, like for instance for the moduli sector of string models where

supersymmetry is supposed to be spontaneously broken, one may be interested in

studying the possibility that some of the fields are stabilized in a supersymmetry-

breaking way with a small mass, whereas the remaining fields are stabilized in a

supersymmetry-preserving way with a large mass. One may then study the low-

energy dynamics and in particular the question of vacuum metastability within a

supersymmetric effective theory obtained by integrating out the heavy multiplets.

The way in which this can be done in a manifestly supersymmetric way is well known,

see for instance [8, 9], and turns out to hold true also in the presence of gravity [10].1

At leading order in the low-energy expansion in the number of derivatives, fermions

and auxiliary fields, the basic recipe is that chiral and vector superfields can be inte-

grated out by using an approximate equation of motion corresponding to imposing

stationarity of W and K respectively. One may then ask the practical question of

what is the effect of heavy modes on the light masses, and in particular whether the

induced corrections tend to improve or to worsen the situation concerning metasta-

bility of the vacuum. More specifically, it would be very valuable to have some

criterium to distinguish situations where the effect of heavy modes on the scalar

square-masses are negative, and must therefore necessarily be computed to be able

to assess vacuum stability, from situations where this effect is positive and can thus

be safely ignored to check vacuum metastability. To derive such a criterium, we

shall study in some detail the structure and the sign of the effect induced by heavy

modes on the sGoldstino mass, which captures the crucial condition for achieving

1See also the earlier work [11] where this question was raised and the works [12, 13] studying

it in the case of effective theories describing string models with fluxes.
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metastability. For simplicity we shall restrict to rigid supersymmetry, but the ex-

tension of supergravity is straightforward, since as explained in [10] the two steps

of integrating out heavy multiplets and adding the coupling to gravity commute at

leading order in the low-energy expansion.

In order to illustrate the basic point that we want to make, let us consider a

generic theory involving both light and heavy modes li and hα that interact among

each other. For simplicity, we shall think of these as real scalar fields in a non-

supersymmetric theory, but the results are clearly more general. In such a situation,

one may define a low-energy effective theory for the light modes li by integrating

out the heavy modes hα. At lowest order in the low-energy expansion, this can

be done by requiring stationarity of the potential energy V with respect to the

heavy modes and solving the equation Vα = 0. This determines hα = hα(l). By

differentiating the stationarity equation with respect to the light fields, one also

deduces that ∂ih
α = −V αβ

inv
Vβi, where V αβ

inv
denotes the inverse of Vαβ as a matrix.

The effective Lagrangian for the low-energy theory is then obtained by substituting

back this solution into the original Lagrangian. For the wave-function factor and the

potential, one easily obtains geff

ij (l) = (gij +∂ih
αgαj +∂jh

βgiβ +∂ih
α∂jh

βgαβ)(l, h(l))

and V eff(l) = V (l, h(l)). The light masses may finally be derived by computing

derivatives of V eff . Using the chain rule, these can be related to derivatives of V .

One finds V eff
i = Vi and V eff

ij = Vij −ViαV
αβ
inv
Vβj, so that the light masses m2eff

ij = V eff
ij

are given by the following expression in terms of the light, heavy and mixing blocks

m2

ij = Vij, M
2

αβ = Vαβ and µ2

iα = Viα of the full mass matrix:

m2eff

ij = m2

ij − µ2

iαM
−2αβµ2

βj . (1.1)

This expressions is easily seen to coincide with the mass matrix of light states

obtained by diagonalizing the full mass matrix of the microscopic theory at leading

order in an expansion in powers of the inverse heavy mass matrix. The formula (1.1)

moreover shows that integrating out the heavy modes generically gives two types of

effects on the masses of the light modes. The first is a direct effect hidden in the first

term on the right hand side and is due to the fact that the light block of the mass

matrix m2

ij gets influenced by the coupling to the heavy modes. It has a sign that

depends on the form of the couplings between light and heavy modes. The second is

an indirect effect described by the second term on the right-hand side and is due to

the fact that the presence of an off-diagonal block in the mass matrix mixing light

and heavy fields makes the true light mass matrix differ from the original light block.

It has a sign that is manifestly always negative. In parallel with what happens to a

quantum mechanical system with two separated sets of low and high energy levels,

we see that there is a direct effect correcting significantly the light energy levels and

negligibly the heavy ones, which is due to diagonal interactions and can have any
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sign, and an indirect level-repulsion effect that further splits apart the two sets of

levels, which is due to off-diagonal interactions and has a definite sign.

In this work, we shall consider N = 1 supersymmetric theories and compute

the detailed form of the effective mass matrix for light scalar fields belonging to

chiral multiplets in the two cases where the heavy modes that are integrated out

are respectively chiral and vector multiplets. More precisely, we shall focus on the

mass along the sGoldstino direction, to extract the metastability condition. It turns

out that two radically different results occur in these two situations. In the case

of heavy chiral multiplets only the indirect level-repulsion effect generically arises

with a non-negligible size. The correction is always negative and thus dangerous,

as suggested from the arguments in [14]. We will derive its general form and show

that it is controlled by the mixed third derivatives of W . In the case of heavy vector

multiplets, on the other hand, only the direct effect occurs. Moreover the correction

turns out to be always positive and therefore harmless, as already argued in [3].

We will rederive more precisely its form, which is controlled by the mixed third

derivatives of K.

2 Models with chiral multiplets

Let us start by considering the simplest case of N = 1 theories with only chiral

multiplets ΦI . The most general two-derivative Lagrangian is specified in terms of

a real Kähler potential K and a holomorphic superpotential W , and reads:

L =

∫

d4θ K(Φ, Φ̄) +

∫

d2θW (Φ) + h.c. . (2.1)

In components, this gives L = T − V where

T = −gIJ̄ ∂µφ
I∂µφ̄J̄ − igIJ̄ ψ

I
(

∂/ψ̄J̄ + ΓJ̄
M̄N̄ ∂/φ̄

M̄ ψ̄N̄
)

, (2.2)

V = gIJ̄ WIW̄J̄ +
1

2
∇IWJ ψ

IψJ + h.c.− 1

4
RIJ̄KL̄ ψ

IψKψ̄J̄ ψ̄L̄ , (2.3)

A vacuum is defined by constant values of the scalars φI and vanishing values of

the fermions ψI , such that V is stationary. Supersymmetry is spontaneously broken

whenever some of the auxiliary fields F I have non-vanishing values. The form of

these auxiliary fields is given by

F I = −gIJ̄ W̄J̄ . (2.4)

The stationarity condition implies moreover that

∇IWJ F
J = 0 . (2.5)
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The masses for the scalar and fermion fields describing fluctuations around the

vacuum are then found to be given by

m2

0IJ̄ = ∇IWK∇J̄W̄
K −RIJ̄KL̄ F

KF̄ L̄ , (2.6)

m2

0IJ = −∇I∇JWK FK , (2.7)

and

m1/2IJ = ∇IWJ . (2.8)

We see from the above expressions that the supersymmetric part of the mass is

controlled by the quadratic terms in the superpotential and given by WIJ .

The direction F I in field space is special. For fermions it defines the Goldstino

η = F̄Iψ
I , which is massless and represents the Goldstone mode of broken super-

symmetry: mη = 0. For scalars it defines instead the sGoldstino ϕ = F̄Iφ
I , which

describes two real scalar fields with masses that are entirely controlled by super-

symmetry breaking effects. One may then look at the average of these two masses,

which is defined as

m2

ϕ =
m2

0IJ̄
F IF̄ J̄

FKF̄K

. (2.9)

A simple computation shows that this is given by [1, 7]

m2

ϕ = RF IF̄I , (2.10)

where

R = −RIJ̄KL̄F
IF̄ J̄FKF̄ L̄

(FM F̄M)2
. (2.11)

From this result it follows that a necessary condition for not having a tachyonic

mode is that the holomorphic sectional curvature R be positive [1, 2]. This necessary

condition becomes also sufficient if for a given K one allows W to be adjusted [5].

Indeed, at the stationary point one may tuneWI to maximize the average sGoldstino

mass, WIJ to make the other masses arbitrarily large, and WIJK to set the splitting

between the two sGoldstino masses to zero. Moreover, in such a situation one can

prove that the two real sGoldstino modes become degenerate mass eigenstates [6].

2.1 Integrating out heavy chiral multiplets

Let us now consider a situation where the chiral multiplets ΦI split into a set of

light multiplets Φi parametrizing the low-energy theory and a set of heavy multi-

plets Φα with a large supersymmetric mass Wαβ to be integrated out. In order to
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distinguish light from heavy multiplets in a sensible way, we must assume that the

supersymmetric mass mixing Wiα between them is not too large. In the following,

we shall denote these heavy and mixing blocks of the supersymmetric mass matrix

in the following way:

Mαβ = Wαβ , µiα = Wiα . (2.12)

The most relevant interactions for our purposes will be the cubic terms inW , namely

the Yukawa couplings

λαij = Wαij , λαβj = Wαβj , λαβγ = Wαβγ . (2.13)

At leading order in the low-energy expansion in number of derivatives, fermions

and auxiliary fields, the low-energy effective theory can be obtained in component

fields by imposing stationarity of V with respect to each heavy field and substituting

back the solution into the original Lagrangian. Equivalently, this effective theory

can be derived directly in superfields, by demanding the stationarity of W with

respect to each heavy chiral multiplet. For convenience, we shall assume without loss

of generality normal coordinates in the microscopic theory around the point under

consideration. This substantially simplifies the computations, although the effective

theory does not automatically inherit normal coordinates, due to the corrections

induced to the Kähler metric.

The corrections due to the supersymmetric mass mixing between heavy and light

multiplets are encoded in the following small dimensionless matrix:

ǫαi = −M−1αβµβi . (2.14)

It should be emphasized that it is always possible to perform a holomorphic field

redefinition in such a way to diagonalize the supersymmetric mass matrix WIJ at a

given point in field space, thereby setting ǫαi to zero. This means that all the effects

depending on ǫαi only serve to compensate a choice of light and heavy fields that does

not exactly diagonalize the supersymmetric part of the mass matrix, and therefore

do not represent genuine non-trivial corrections. Moreover, since ǫαi must be small,

these effects are anyhow quantitatively irrelevant. We may then set ǫαi = 0 by

suitably choosing the fields. We shall however keep ǫαi 6= 0 during the computations

to verify more explicitly the above claims and set ǫαi = 0 only at the very end.

We can anticipate that all the tensorial quantities characterizing the light fields will

receive additional contributions coming from heavy indices converted to light indices

through the matrix ǫαi . This leads us to introduce already at this stage the following
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deformed tensors:

gǫ
i̄ = gi̄ + ǫαi gα̄ + ǭβ̄̄ giβ̄ + ǫαi ǭ

β̄
̄ gαβ̄ , (2.15)

λǫ
αij = λαij + ǫβi λαβj + ǫγjλαiγ + ǫβi ǫ

γ
jλαβγ , (2.16)

Rǫ
i̄kl̄ = Ri̄kl̄ + ǫαi Rα̄kl̄ + ǭβ̄̄Riβ̄kl̄ + ǫγkRi̄γl̄ + ǭδ̄l̄Ri̄kδ̄ + ǫαi ǭ

β̄
̄Rαβ̄kl̄

+ ǫαi ǫ
γ
kRα̄γl̄ + ǫαi ǭ

δ̄
l̄Rα̄kδ̄ + ǭβ̄̄ ǫ

γ
kRiβ̄γl̄ + ǭβ̄̄ ǭ

δ̄
l̄Riβ̄kδ̄ + ǫγk ǭ

δ̄
l̄Ri̄γδ̄

+ ǭβ̄̄ ǫ
γ
k ǭ

δ̄
l̄Riβ̄γδ̄ + ǫαi ǫ

γ
k ǭ

δ̄
l̄Rα̄γδ̄ + ǫαi ǭ

β̄
̄ ǭ

δ̄
l̄Rαβ̄kδ̄ + ǫαi ǭ

β̄
̄ ǫ

γ
kRαβ̄γl̄

+ ǫαi ǭ
β̄
̄ ǫ

γ
k ǭ

δ̄
l̄Rαβ̄γδ̄ . (2.17)

Finally, we shall define the following quantity for later use, which characterizes the

heavy block WαIg
IJ̄W̄J̄β̄ of the square of the supersymmetric mass matrix:

|M ǫ|2αβ̄ = Mαγ

(

gγδ̄ + ǫγi g
iδ̄ + ǭδ̄̄g

γ̄ + ǫγi ǭ
δ̄
̄g

i̄
)

M̄δ̄β̄ . (2.18)

In the following, we shall compute within the component approach the average

sGoldstino mass in the low-energy effective theory, defined at a stationary point as

m2eff

ϕ =
m2eff

0i̄ F
ieffF̄ ̄eff

F keffF̄ eff

k

. (2.19)

We shall then reproduce the same result within the superfield approach by first

computing the Riemann tensor Reff

i̄kl̄
of the effective theory at a generic point and

then applying the standard expression for the sGoldstino mass at a stationary point

within the effective theory, namely

m2eff

ϕ = ReffF ieff F̄ eff

i , (2.20)

in terms of an effective sectional curvature

Reff = −
Reff

i̄kl̄
F ieffF̄ ̄effF keff F̄ l̄eff

(Fmeff F̄ eff
m )2

. (2.21)

2.2 Component approach

Consider first the component approach. For simplicity we shall focus on the bosonic

fields and discard fermions, since we are interested in computing effective scalar

masses. At leading order in the low-energy expansion, the values of the heavy scalar

fields are defined by

φα = φα(φi, φ̄ı̄) solution of Vα(φi, φ̄ı̄, φα, φ̄ᾱ) = 0 . (2.22)

At leading order in the number of auxiliary fields, this stationarity condition implies

that WαIW̄
I = 0 and gives the following values for the heavy auxiliary fields:

F α = ǫαi F
i . (2.23)
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The effective theory for the light fields is then obtained by substituting these ex-

pressions for φα and F α into the original Lagrangian.

To derive the effective theory, we will need to compute the derivatives of the

heavy fields φα and φ̄ᾱ with respect to the light fields φi. These can be deduced by

differentiating the stationarity conditions with respect to the light fields. One finds:

∂φα

∂φi
= −M−2αβ̄

0 µ2

0β̄i −M−2αβ
0 µ2

0βi , (2.24)

∂φ̄ᾱ

∂φi
= −M−2ᾱβ

0 µ2

0βi −M−2ᾱβ̄
0 µ2

0β̄i . (2.25)

Here M2

0
and µ2

0
represent the heavy and off-diagonal blocks of the complete scalar

mass matrix of the microscopic theory. Notice that µ0 and M0 differ from µ and M ,

since the former refer to the full mass matrix whereas the latter parametrize only

its supersymmetric part. At quadratic order in the auxiliary fields one finds:

M−2αβ̄
0 = V αβ̄

inv
+ V αγ̄

inv
Vγ̄δ̄V

δ̄σ
invVστV

τβ̄
inv
, (2.26)

M−2αβ
0

= −V αγ̄
inv
Vγ̄δ̄V

δ̄β
inv
. (2.27)

The effective Kähler metric of the light fields can be determined by looking at the

scalar kinetic terms and substituting the values of the heavy scalar fields. One may

in this case work at leading order in the auxiliary fields, since these terms already

involve two derivatives. Focusing also on the leading order in the light masses

and the heavy-light mass mixing, the relations (2.24) and (2.25) then simplify to

∂iφ
α = ǫαi and ∂iφ̄

ᾱ = 0. Using these expressions, which actually turn out to be

correct even at order ǫ2, one finds that the kinetic term can be rewritten in the

standard supersymmetric form with an effective Kähler metric given by

geff

i̄ = gǫ
i̄ . (2.28)

The effective mass matrix of the light scalar fields can on the other hand be de-

termined by using the supersymmetric generalization of the expression (1.1), which

can be derived by using the same logic. As in the general non-supersymmetric case,

the result corresponds to a perturbative diagonalization of the full scalar mass ma-

trix, at leading order in the inverse mass matrix of the heavy scalars. Denoting with

m2
0 the light block of the scalar mass matrix, one finds:

m2eff

0i̄ = m2

0i̄ − µ2

0iᾱM
−2ᾱβ
0 µ2

0β̄ − µ2

0iᾱM
−2ᾱβ̄
0 µ2

0β̄̄

−µ2

0iαM
−2αβ
0

µ2

0β̄ − µ2

0iαM
−2αβ̄µ2

0β̄̄ , (2.29)

m2eff

0ij = m2

0ij − µ2

0iᾱM
−2ᾱβ̄
0 µ2

0β̄j − µ2

0iᾱM
−2ᾱβ
0 µ2

0βj

−µ2

0iαM
−2αβ̄
0 µ2

0β̄j − µ2

0iαM
−2αβ
0 µ2

0βj . (2.30)
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Let us now focus on the Hermitian block m2eff
0i̄ . Using eqs. (2.26) and (2.27) in the

formula (2.29), and restricting to terms that are at most quadratic in the auxiliary

fields as demanded by supersymmetry at the two-derivative level, we see that there

are three kinds of effects coming from the four correction terms. The first type

involves second derivatives of W and no auxiliary fields, and comes only from the

first correction term. The second type involves the Riemann tensor and two auxiliary

fields, and comes again only from the first correction term. The third type involves

third derivatives of W and two auxiliary fields, and comes from all four correction

terms. All together, these three effects give a negative level-repulsion correction

with respect to m2
0i̄.

Let us now compute more specifically the average sGoldstino mass m2eff
ϕ defined

by eq. (2.19) at a stationary point of the effective theory and compare it to its

analogue m2

ϕ defined by eq. (2.9) in the microscopic theory. Recall that we are

using normal coordinates, so that gi̄ = δi̄ and geff

i̄ = δi̄ + ǫαi ǭ
ᾱ
̄ . The first thing we

need to make more explicit are the effective auxiliary fields. To do so we start by

deriving W eff by substituting the solution (2.22) into in W . Taking a derivative we

then find that W eff

i = Wi + ǫαi Wα. But using the stationarity condition WαIW̄Ī = 0

of the heavy scalars we see that Wα = ǭᾱı̄ Wi, so that W eff
i = (δi̄ + ǫαi ǭ

ᾱ
̄ )Wj = geff

i̄ Wj.

The auxiliary fields in the effective theory thus coincide with the light components

of the auxiliary fields in the microscopic theory: F ieff = −geffi̄W̄ eff
̄ = −W̄ı̄ = F i.

Recalling (2.23) one also finds that geff

i̄ F
ieff F̄ ̄eff = F IF̄ Ī . In summary, we get:

F ieff = F i , F ieff F̄ eff

i = F IF̄I . (2.31)

To proceed, we also need to compute more explicitly the mass-matrix blocks (2.26)

and (2.27) entering in the expression (2.29) for the effective mass matrix m2eff

0i̄ . In

normal coordinates, these quantities depend on |M ǫ|2
αβ̄

= Mαγ

(

gγδ̄ + ǫγi ǭ
δ̄
ı̄

)

M̄δ̄β̄, and

at quadratic order in the auxiliary fields one finds that

Vαβ̄ = |M ǫ|2αβ̄ −Rαβ̄KL̄F
KF̄ L̄ , Vαβ = −λαβKF

K , (2.32)

V αβ̄
inv

= |M ǫ|−2αβ̄ + |M ǫ|−2αδ̄|M ǫ|−2β̄γRγδ̄KL̄F
KF̄ L̄ . (2.33)

We are now in position to evaluate the average sGoldstino mass in the effective

theory by computing the four correction terms in eq. (2.29). As explained after

eqs. (2.29) and (2.30), these give rise to three types of effects. But when look-

ing along the sGoldstino direction, some simplifications occur, due to the fact that

only supersymmetry-breaking effects matter. The first type of effect cancels the

corresponding leading part of m2

0i̄. The second type of effect combines with the

corresponding subleading term in m2
0i̄ to reconstruct the average sGoldstino mass

of the microscopic theory. The third type of effect gives instead a genuine correc-

tion. The precise evaluation of these effects can be simplified by noticing that at
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a stationary point WIJW̄J̄ = 0, which implies that at leading order in the auxil-

iary fields Vαı̄Wi = −Vαβ̄Wβ. After a straightforward computation one finds that

m2eff

ϕ = −
(

RIJ̄KL̄ + λαIK |M ǫ|−2αβ̄λ̄β̄J̄L̄

)

F IF̄ J̄FKF̄ L̄/FM F̄M . Recalling then that

F α = ǫαi F
ieff and F IF̄I = F ieffF̄ eff

i , one may finally rewrite the above result as

m2eff

ϕ =
(

Rǫ − λǫ
α|M ǫ|−2αβ̄λ̄ǫ

β̄

)

F ieff F̄ eff

i , (2.34)

with

Rǫ = −
Rǫ

i̄kl̄
F ieff F̄ ̄effF keffF̄ l̄eff

(Fmeff F̄ eff
m )2

, (2.35)

λǫ
α =

λǫ
αijF

ieffF jeff

F keff F̄ eff

k

. (2.36)

The first term in the result (2.34) corresponds to m2

ϕ, whereas the second term

describes a negative level-repulsion effect controlled by the Yukawa couplings λαij

mixing one heavy and two light fields. As anticipated, the dependence on ǫ amounts

to a transformation of all the tensorial quantities accounting for the need to disen-

tangle light from heavy eigenmodes of the supersymmetric mass matrix, and can

thus be dropped by setting ǫ to zero.

2.3 Superfield approach

The above results can also be derived by integrating out the heavy fields directly

at the superfield level, and then computing the sGoldstino mass in the resulting

effective theory by applying eqs. (2.20) and (2.21). To do this, one derives the

effective Kähler potential and superpotential by solving the following approximate

superfield equations of motion:

Φα = Φα(Φi) solution of Wα(Φi,Φα) = 0 . (2.37)

The bosonic components of this superfield equations of motion coincide, at leading

order in the number of fermions and auxiliary fields, with the equations of motion

(2.22)–(2.23) that we have used in the component approach.

To proceed, we will need to compute the first and second derivatives of the

heavy scalar fields with respect to the light scalar fields. These can be derived by

differentiating eq. (2.37), and one finds the following results:

∂φα

∂φi
= ǫαi ,

∂2φα

∂φi∂φj
= −M−1αβλǫ

βij . (2.38)

The effective geometry can be derived by taking derivatives with respect to the

light fields of the effective Kähler potential Keff , where the heavy fields have been
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substituted by the solution (2.37) in terms of light fields. We focus again on a

given point in the light field space, around which we choose normal coordinates,

but this point no longer needs to be a stationary point. Then, using the chain rule

and eqs. (2.38), one easily computes Keff

i̄ = δi̄ + ǫαi ǭ
ᾱ
̄ , Keff

ı̄jk = −M−1αβ ǭᾱı̄ λ
ǫ
βjk and

Keff

i̄kl̄
= Rǫ

i̄kl̄
+λǫ

αik|M |−2αβ̄λ̄ǫ
β̄̄l̄

. This finally implies that the effective metric is given

by geff

i̄ = gǫ
i̄, the effective Christoffel symbol by Γeff

ı̄jk = −M−1αβ ǭᾱı̄ λ
ǫ
βjk and finally

the effective Riemann tensor by the following expression:

Reff

i̄kl̄ = Rǫ
i̄kl̄ + λǫ

αik|M ǫ|−2αβ̄λ̄ǫ
β̄̄l̄ (2.39)

Plugging this expression into eqs. (2.20) and (2.21), we then reproduce the form of

the result (2.34).2

3 Models with chiral and vector multiplets

Let us now consider the case of N = 1 theories with chiral multiplets ΦI and vector

multiplets V a. The most general two-derivative Lagrangian is in this case specified

by a real Kähler potential K, a holomorphic superpotential W , a holomorphic gauge

kinetic function fab and some holomorphic Killing vectors XI
a :3

L =

∫

d4θ K(Φ, Φ̄, V ) +

∫

d2θ
[

W (Φ) +
1

4
fab(Φ)W aαW b

α

]

+ h.c. . (3.1)

The gauge transformations of the chiral multiplets are defined by the Killing vectors

XI
a whereas those of the vector superfields depend only on the structure constants

f c
ab of the gauge group. Gauge invariance of the Lagrangian imposes that the vari-

ation of the non-holomorphic terms should be at most a Kähler transformation of

the form Λafa + Λ̄af̄a, where the fa are some holomorphic functions, whereas the

holomorphic terms should be strictly invariant. This implies the following condi-

tions:

XI
aKI −

i

2
Ka = fa , (3.2)

XI
aWI = 0 , (3.3)

XI
afbcI = −2f d

a(b fc)d . (3.4)

These equations show that −1

2
Ka can be identified with the real Killing potential

for the Killing vector XI
a . They also imply that KaI = 2iX̄aI and Kab = 4gIJ̄X

I
(aX̄

J̄
b).

2Note that the results derived in this subsection are evaluated at values of the heavy scalar

fields solving Wα = 0, whereas the results of previous section were evaluated at values of the heavy

scalar fields solving Vα = 0. However it turns out that the difference between these two values is

subleading in the counting of auxiliary fields and can therefore be discarded.
3We omit for simplicity the possibility of Fayet-Iliopoulos terms for Abelian factors.
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Finally, the equivariance condition on the Killing vectors guarantees that the Killing

potentials can be chosen to transform in the adjoint representation, so that

gIJ̄X
I
[aX̄

J̄
b] =

i

4
f c

ab Kc . (3.5)

In components and in the Wess-Zumino gauge, one finds L = T − V where:

T = −gIJ̄ Dµφ
IDµφ̄J̄ − 1

4
hab F

a
µνF

bµν +
1

4
θab F

a
µνF̃

bµν

− igIJ̄ ψ
I
(

D/ ψ̄J̄ + ΓJ̄
M̄N̄ D/ φ̄

M̄ ψ̄N̄
)

− i

2
hab λ

aD/ λ̄b + h.c.

+
1√
2
habI λ

aσµνψIF b
µν + h.c. , (3.6)

V = gIJ̄ WIW̄J̄ +
1

8
habKaKb

+
1

2

[

∇IWJ ψ
IψJ − gIJ̄habIW̄J̄ λ

aλb +
√

8
(

gIJ̄X̄
J̄
a +

i

4
hbchabIKc

)

ψIλa
]

+ h.c.

−1

4
RIJ̄KL̄ ψ

IψKψ̄J̄ ψ̄L̄ +
1

4
gIJ̄habIhcdJ̄ λ

aλbλ̄cλ̄d +
1

2
hcdhacIhbdJ̄ ψ

Iλaψ̄J̄ λ̄b

−1

4

[

∇IhabJ ψ
IψJλaλb + hcdhacIhbdJψ

IλaψJλb
]

+ h.c. . (3.7)

In these expressions Dµ is the covariant derivative acting as Dµφ
I = ∂µφ

I + Aa
µX

I
a ,

Dµψ
I = ∂µψ

I + Aa
µ∂JX

I
a ψ

J and Dµλ
a = ∂µλ

a + f a
bc A

b
µλ

c, whereas F a
µν is the

field-strength F a
µν = ∂µA

a
ν − ∂νA

a
µ + f a

bc A
b
µA

c
ν and hab and θab denote the real and

imaginary parts of fab.

A vacuum is defined by constant values of the scalars φI and vanishing values of

the fermions ψI , λa and the vectors Aa
µ, such that V is stationary. Supersymmetry

is spontaneously broken whenever some of the auxiliary fields F I , Da have non-

vanishing values. The form of these auxiliary fields is given by

F I = −W̄ I , (3.8)

Da = −1

2
habKb . (3.9)

The stationarity condition implies that

∇IWJ F
J +

1

2
habID

aDb + iX̄aID
a = 0 . (3.10)

Moreover, by contracting this relation with the Killing vectors XI
a and taking the

imaginary part, and using (3.3) and its derivative as well as (3.5), one finds the

following relation between the values of F I and Da:

i∇IXaJ̄ F
IF̄ J̄ − gIJ̄X

I
(aX̄

J̄
b) D

b +
1

2
f d

ab θdc D
bDc = 0 . (3.11)
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The masses of the scalar, fermion and vector fields describing fluctuations around

the vacuum are found to be given by

m2

0IJ̄ = ∇IWK∇J̄W̄
K − RIJ̄KL̄ F

KF̄ L̄ + habX̄aIXbJ̄ + habhacIhbdJ̄ D
bDc

+
(

qaIJ̄ − ihbchabIXcJ̄ + ihbchabJ̄X̄cI

)

Da , (3.12)

m2

0IJ = −∇I∇JWK FK − habX̄aIX̄bJ − 1

2

(

∇IhabJ − 2hcdhacIhbdJ

)

DaDb

+ 2i hbchab(IX̄cJ)D
a , (3.13)

then

m1/2IJ = ∇IWJ , (3.14)

m1/2ab = habI F
I , (3.15)

m1/2Ia =
√

2 X̄aI −
i√
2
habI D

b , (3.16)

and finally

m2

1ab = 2 gIJ̄X
I
(aX̄

J̄
b) . (3.17)

We see that the supersymmetric parts of the mass matrices are given by WIJ for

the chiral multiplets and by 2gIJ̄X
I
(aX̄

J̄
b) for the vector multiplets.

The directions F I and Da in field space are special. For fermions they define the

Goldstino η = F̄Iψ
I + i

√

2
Daλ

a, which is massless and represents the Goldstone mode

of broken supersymmetry: mη = 0. For scalars they define instead the projected

sGoldstino ϕ = F̄Iφ
I , which describes two real scalar fields with masses that are

entirely controlled by supersymmetry breaking effects. One may then consider the

average of these two masses, which is as before given by

m2

ϕ =
m2

0IJ̄
F IF̄ J̄

FKF̄K

. (3.18)

A straightforward computation shows that the result is in this case given by [3, 7]

m2

ϕ = RF IF̄I + S DaDa +
1

4
T

(DaDa)
2

F IF̄I

+M2
DaDa

F IF̄I

, (3.19)

where

R = −RIJ̄KL̄ F
IF̄ J̄FKF̄ L̄

(FM F̄M)2
, (3.20)

S =
hacIh

cdhdbJ̄ F
IF̄ J̄DaDb

(FKF̄K)(DcDc)
, (3.21)

T =
habIh

I
cb D

aDbDcDd

(DeDe)2
, (3.22)

M2 =
2XI

aX̄bI D
aDb

DcDc
. (3.23)
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The directionsXI
a in field space are also special. In the supersymmetric limit they

define the chiral multiplets Φa that are eaten up by the massless vector multiplets

to produce massive vector multiplets. When supersymmetry is broken, things get

a bit more complicated but the fermionic and bosonic components of Φa still get a

mass comparable to that of the components of V a.

From the above result it follows that a necessary condition for not having a

tachyonic mode is that the holomorphic sectional curvature R be larger than some

negative value depending on the gauge sector data [3]. In this case it is less clear

whether this necessary condition becomes also sufficient if for a given K one allows

W to be adjusted. Indeed, gauge-invariance forbids any tuning of WI , WIJ and

WIJK along the directions XI
a . The corresponding modes thus represent a priori

a left-over danger of instability [7]. This danger does however disappear in the

limit we are considering here where the vector masses are much larger than the

supersymmetry breaking scale, since these modes then become very heavy.

3.1 Integrating out heavy vector multiplets

Let us now suppose that all the vector multiplets have a large supersymmetric

mass, much larger than the splittings induced by supersymmetry breaking. We may

then integrate out in a supersymmetric way the modes associated with the heavy

vector multiplets, paying attention to the fact that in order to become massive they

absorb the modes of some chiral multiplets. The relevant scales in this case are the

supersymmetric mass matrix 2gIJ̄X
I
(aX̄

J̄
b) = 1

2
Kab of the heavy vector multiplets and

the quantity iXaI = 1

2
KaI controlling the supersymmetric mixing between vector

multiplets and chiral multiplets:

M2

ab =
1

2
Kab , νaI =

1

2
KaI . (3.24)

The couplings that are expected to be relevant are instead given by the cubic cou-

plings in K, namely the generalized charges

qaIJ̄ = −1

2
KaIJ̄ , qabI = −1

2
KabI , qabc = −1

2
Kabc . (3.25)

At leading order in the expansion in number of derivatives, fermions and auxil-

iary fields, the low-energy effective theory for the light chiral multiplets can again

be obtained in two different but equivalent ways. One may proceed in components

and integrate out the heavy modes associated to the vector multiplets and the chiral

multiplets that they absorb, by requiring stationarity of V with respect to them.

One may however also proceed in superfields and integrate out the heavy vector

superfields by requiring stationarity of K with respect to them. For convenience,
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we shall as before assume without loss of generality normal coordinates in the mi-

croscopic theory around the point under consideration.

In analogy with what happens in the case of only chiral multiplets, we expect

that the corrections due to the supersymmetric mixing between heavy and light

multiplets should be encoded in following parameter of dimension one:

δa
I = −M−2abνbI . (3.26)

In this case, such a parameter cannot be set to zero by a simple holomorphic field

redefinition, because it corresponds to the non-holomorphic mixing between the

heavy gauge fields and the corresponding real would-be Goldstone modes. However,

it can be set to zero by making a suitable choice of gauge. With any difference choice

of gauge, δa
I would be non-zero and the terms depending on it in the effective theory

would take into account the mixing between light and heavy fields. By doing the

computation in such a gauge one would presumably end up getting deformed versions

of all the tensorial quantities for light fields, involving additional contributions where

heavy indices are converted to light indices by δa
I . We shall however refrain from

keeping a general δa
I 6= 0 and set δa

I = 0 from the beginning by choosing the unitary

gauge.

To perform the splitting between light and heavy fields and the gauge fixing

more precisely, we may start by splitting the chiral multiplets ΦI into those that are

orthogonal and those that are parallel to the Killing vectors XI
a evaluated at the

point under consideration. This decomposition can be done more explicitly with

the help of the parallel projector P I
J = 2XI

aM
−2abX̄bJ . We shall denote these two

sets of fields respectively with Φi and Φa. The orthogonal components Φi define the

light chiral multiplets of the low-energy effective theory. The parallel components

Φa are instead either heavy or eliminable through the gauge fixing.

In the following, we shall follow the same logic as in the previous section and

first compute within the component approach the average sGoldstino mass in the

low-energy effective theory, defined at a stationary point as

m2eff

ϕ =
m2eff

0i̄ F
ieffF̄ ̄eff

F keffF̄ eff

k

. (3.27)

We will then reproduce the same result within the superfield approach by first

computing the Riemann tensor of the effective theory at a generic point and then

plugging it in the expression for the sGoldstino mass at a stationary point within

the effective theory, which is given by

m2eff

ϕ = ReffF ieff F̄ eff

i , (3.28)

in terms of an effective sectional curvature

Reff = −
Reff

i̄kl̄
F ieffF̄ ̄effF keff F̄ l̄eff

(Fmeff F̄ eff
m )2

. (3.29)
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3.2 Component approach

Let us first consider the component approach, where it is convenient to choose the

Wess-Zumino gauge for the extra gauge symmetries implied by supersymmetry. For

simplicity we shall as before focus on bosonic fields and discard fermions since we

are interested in scalar masses. The relevant bosonic heavy modes coming from

V a and Φa are the following. In the vector multiplets V a, the gauge fields Aa
µ

contain heavy physical modes and should of course be considered. In the chiral

multiplets Φa, on the other hand, the modes σa = Re(φa) correspond to the would-

be Goldstone modes and can be eliminated by choosing the unitary gauge for the

standard gauge symmetries, where the corresponding degrees of freedom are the

longitudinal polarizations of the gauge bosons, whereas the modes ρa = Im(φa) are

physical and easily seen to have a mass comparable to that of the vector fields, so

that they must be considered. At leading order in the low-energy expansion, the

heavy bosonic fields Aa
µ and ρa can then be integrated out by using the following

approximate equations of motion:

ρa = ρa(φi, φ̄ı̄) solution of Va(φ
i, φ̄ı̄, ρa) = 0 , (3.30)

Aa
µ = 0 . (3.31)

Concerning the auxiliary fields, notice that those coming from the parallel chiral

multiplets automatically vanish, as a consequence of the gauge invariance of the

superpotential (3.3), whereas those of the vector multiplets are given by eq. (3.11),

which corresponds to the equation of motion of ρa and reduces approximately to

qaIJ̄F
IF̄ J̄ − 1

2
M2

abD
b = 0. At leading order in the low-energy expansion one then

finds:

F a = 0 , (3.32)

Da = 2M−2abqbi̄F
iF̄ ̄ . (3.33)

The effective theory for the light fields is finally obtained by substituting these

expressions into the Lagrangian.

To derive the effective theory, one needs in principle to compute the derivatives of

ρa with respect to φi. This can be deduced by taking a derivative of the stationarity

condition for ρa with respect to φi. One then finds a result that is inversely propor-

tional to the mass matrix of ρa, which is approximately equal to that of the vectors,

and directly proportional to the mass mixing between ρa and φi. This mixing can be

computed explicitly and after using the relation (3.3) ensuring the gauge invariance

of W , as well as its first and second derivatives, one verifies that it contains only

terms that are quadratic in the auxiliary fields or linear in the auxiliary fields but

further suppressed by the ratio between light chiral masses and heavy vector mass,
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which must all be neglected. As a result, one finds:

∂ρa

∂φi
= 0 . (3.34)

The effective Kähler metric of the light fields is not affected. Indeed, neither

Aa
µ nor ρa give any effect in the kinetic terms, as a consequence of eqs. (3.31) and

(3.34). One thus simply finds:

geff

i̄ = gi̄ . (3.35)

The effective scalar mass matrices can be computed by taking into account both

the direct effect of the heavy modes on the microscopic mass evaluated in the light

scalar directions φi and the indirect level-repulsion effect coming from the mass

mixing with the heavy scalar directions ρa. It turns however out that the level-

repulsion effect is negligible, for essentially the same reasons as those leading to

eq. (3.34). We thus finally get:

m2eff

0i̄ = m2

0i̄ , (3.36)

m2eff

0ij = m2

0ij . (3.37)

There is nevertheless a direct effect in the Hermitian block m2eff

0i̄ , which consists

of two significant contributions in m2
0i̄ coming from the couplings to heavy fields.

The first contribution comes from plugging back the small but non-vanishing value

of Da into the last term of (3.12). It is easily evaluated by using eq. (3.33),

and one finds qai̄D
a = 2 qai̄M

−2abqbkl̄F
kF̄ l̄. The second contribution arises in-

stead from the part of the first term in (3.12) that corresponds to values for the

summed index K that run over the parallel chiral modes that are integrated out.

It can be evaluated by using the projected metric P IJ̄ = 2XI
aM

−2abX̄ J̄
b , and reads

∇iWa∇̄W̄
a = ∇iWKP

KL̄∇̄W̄L̄ = 2XK
a ∇iWKM

−2abX L̄
b ∇̄W̄L̄. But taking a deriva-

tive of eq. (3.3) one deduces that XK
a ∇iWK = −iqaiK̄ F̄

K̄ = −iqaik̄F̄
k̄, and finally

∇iWa∇̄W̄
a = 2 qail̄M

−2abqbk̄F
kF̄ l̄. These two contributions represent a direct cor-

rection to all the masses, which may be either positive or negative depending on the

value of charges along the direction that is considered.

Let us now evaluate more precisely the average sGoldstino mass defined by

eq. (3.27) at a stationary point of the effective theory and compare it to its analogue

defined by eqs. (3.28) and (3.29) in the microscopic theory. Along the supersym-

metry breaking direction F ieff = F i the two direct corrections discussed above give

identical contributions that sum up and one easily finds:

m2eff

ϕ =
(

R + 4 qaM
−2abqb

)

F ieffF̄ eff

i , (3.38)
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where

R = −Ri̄kl̄ F
ieffF̄ ̄effF keffF̄ l̄eff

(FmeffF̄ eff
m )2

, (3.39)

qa =
qai̄ F

ieffF̄ ̄eff

F keffF̄ eff

k

. (3.40)

The first term in the result (3.38) corresponds to m2

ϕ, whereas the second term

describes a positive direct effect controlled by the charges qai̄ mixing one heavy

and two light fields. The absence of any indirect level-repulsion effect is due to the

absence of genuine heavy chiral multiplets mixing to the light chiral multiplets.

3.3 Superfield approach

It is straightforward to show that the above results can also be obtained by inte-

grating out the heavy vector multiplets at the level of superfields. The only compli-

cation is that one should switch from the unitary plus Wess-Zumino gauge used in

the component formulation, which fix respectively the standard and the extra gauge

symmetries, to a supersymmetric unitary gauge to be used in the superfield formu-

lation, which fixes at once all the multiplet of gauge symmetries. More precisely,

we shall gauge fix all the parallel chiral multiplets Φa to constant values coincid-

ing with their values at the stationary point. The superfields V a become however

general vector superfields in this gauge, and compared to the Wess-Zumino gauge

that was chosen in the component approach, the modes that were described by the

real scalar fields ρa in the Φa have now been transfered to the real scalar fields ca in

the general V a. In this supersymmetric gauge, all the heavy degrees of freedom are

thus contained in V a, and can be integrated out by using the following approximate

superfield equations of motion:

V a = V a(Φi, Φ̄ı̄) solution of Ka(Φ
i, Φ̄ı̄, V a) = 0 . (3.41)

The bosonic components of this superfield equations of motion map to the equations

of motion (3.30)–(3.33) that we have used in the component approach, modulo the

different gauge choice.

To proceed, we will need to compute the first and second derivatives of the

lowest component of the heavy vector superfields with respect to the light scalar

superfields. These can be derived by differentiating eq. (3.41), and at the point

under consideration where Kai = 0 one finds the following results:

∂ca

∂φi
= 0 ,

∂2ca

∂φi∂φ̄̄
= M−2abqbi̄ . (3.42)

The effective geometry can be derived by taking derivatives with respect to the

light fields of the effective Kähler potential Keff , where the heavy fields have been

17



substituted by the solution (3.41) in terms of light fields. We focus again on a given

point in the light field space and use normal coordinates. Then, using the chain rule

and eq. (3.42), and noticing that Kaij = 0 and Kai̄ = −2qai̄, one easily computes

Keff

i̄ = δi̄, K
eff

ı̄jk = 0 and Keff

i̄kl̄
= Ki̄kl̄ −2 qai̄M

−2abqbkl̄ −2 qail̄M
−2abqbk̄. This finally

implies that the effective metric is given by geff

i̄ = gi̄, the effective Christoffel symbol

by Γeff

ı̄jk = 0 and the effective Riemann tensor by the following expression:

Reff

i̄kl̄ = Ri̄kl̄ − 2 qai̄M
−2abqbkl̄ − 2 qail̄M

−2abqbk̄ . (3.43)

Plugging this expression into eqs. (3.28) and (3.29), we then reproduce the form of

the result (3.38).

4 Conclusion

Summarizing, we have shown that integrating out heavy chiral multiplets Φα and

vector multiplets V a with large and approximately supersymmetric mass matrices

M2αβ̄ and M2ab induces corrections to the square masses of light scalars φi that

are due respectively to an indirect level-repulsion effect and a direct coupling effect.

The crucial dimensionless couplings that are involved in these effects are respectively

the Yukawa couplings λαij = Wαij and the generalized gauge charges qai̄ = −1

2
Kai̄,

which corresponds to cubic couplings mixing one heavy and two light multiplets

respectively in W and K. In particular, by looking along the chiral projection of

the supersymmetry breaking direction, which is defined by the chiral auxiliary fields

F i, we showed that the averaged sGoldstino mass in the effective theory takes the

form:

m2eff

ϕ =
(

R− λα|M |−2αβ̄λ̄β̄ + 4 qaM
−2abqb

)

M4

S
. (4.1)

The first term is what one would find by just restricting to the light fields. It is

controlled by the sectional curvature R along the F -direction, and can have any

sign. The second term is the correction induced by heavy chiral multiplets. It is

controlled by the Yukawa couplings λα along the F -direction and is always negative.

The third term is the correction induced by heavy vector multiplets. It is controlled

by the gauge charges qa along the F -direction and is always positive. Finally MS is

the scale of supersymmetry breaking, which in our situation is set by the F auxiliary

fields since the D auxiliary fields are suppressed.

The result (4.1) has been derived in rigid supersymmetry, in the limit where

the supersymmetry breaking scale is much lower than the mass scale M of the

heavy modes that are integrated out. Its generalization to gravity can however be

derived in a straightforward way by using the results of [10], where it was shown
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that whenever the gravitino mass m3/2 is also much smaller than the heavy mass

scale M , one may first integrate out the fields in the rigid limit and then switch on

the coupling to gravity. More precisely, the only modification induced by gravity

in (4.1) is the addition of the correction 2m2

3/2
, which reconstructs the supergravity

result of [1] for the sGoldstino mass in the theory truncated to light modes:

∆m2eff

ϕ = 2m2

3/2 . (4.2)

The origin of the difference in sign in the corrections induced by heavy chiral and

vector multiplets is transparent in the component approach, where the first is due to

an indirect level-repulsion effect whereas the second is due to a direct coupling effect.

In the superfield approach, the two computations look instead very symmetric and

the difference in sign is at first sight surprising. A closer inspection shows however

that there too it can be understood quite robustly. For this we observe that for heavy

chiral multiplets the stationarity condition Wα = 0, the auxiliary fields F̄α = −Wα

and the relevant cubic couplings λαij = Wαij are all controlled by the superpotential

W , whereas for heavy vector multiplets the stationarity condition Ka = 0, the

auxiliary fields Da = −1

2
Ka and the relevant cubic couplings qai̄ = −1

2
Kai̄ are all

controlled by the Kähler potential K. There is then a perfect symmetry between

the two dynamics, which exchanges the roles of K and W . When one looks at the

effects of these heavy dynamics onto the supersymmetry-breaking part of the masses

of light scalar fields, this symmetry is however broken, because supersymmetry-

breaking contributions to scalar masses arise only from K and not from W . This is

what causes the difference in sign between the two effects.4

The result that we have obtained may have interesting applications in the context

of string models, where the situation in which some of the multiplets are stabilized

in a supersymmetric way at a high energy scale naturally occurs and the question of

their effect on the dynamics of the light multiplets, which are supposed to break su-

persymmetry, acquires a crucial importance. In such a situation one has in principle

to honestly integrate out the heavy fields to properly describe the dynamics of the

light fields. But it is in general cumbersome to do so, and this raises the question of

whether or when one may get a qualitatively reliable indication on the light field dy-

namics by just freezing the heavy fields and truncating the theory. Some particular

situations where one can safely do this truncation and get the right effective theory

have been identified in [16, 17, 18]. Here we have shown more specifically and more

systematically what kind of dangers may arise from the heavy fields concerning the

masses of the light fields, which are the crucial issue for metastability of the vacuum.

A concrete example is that of string models where large classical effects related

to background fluxes stabilize some moduli in a supersymmetric way with a large

4A similar phenomenon has also been encountered in different context in [15].
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mass and small quantum effects related to gauge interactions stabilize some other

moduli in a non-supersymmetric way with a small mass [19, 20]. The dynamics of

these heavy and light modes, schematically denoted byH and L, is then described by

K = KL(L, L̄)+KH(H, H̄)+KQ(L, L̄,H, H̄) and W = 0+WH(H)+WQ(L,H). For

gauge interactions with a field-dependent gauge kinetic function f ∝ L, the quantum

effects have the following structure. The correction KQ consists of both perturbative

and non-perturbative effects suppressed by inverse powers and exponentials of L+L̄,

and can usually be neglected, since it represents a small correction to the kinetic

terms of L. The correction WQ consists instead only of non-perturbative effects

suppressed by exponentials of L, and must be kept, since it represents the dominant

source of potential for L.5 In this situation, freezing the heavy moduli H to constant

values is a priori not justified [24, 25, 26], but turns out a posteriori to give a

sensible approximation to the effective theory for the light moduli L thanks to the

smallness of the quantum corrections mixing L and H [17]. Applying our general

result, we may now establish more quantitatively the importance of the corrections

induced by integrating out the heavy modes on the light masses, and in particular

the sGoldstino mass m. The relevant Yukawa coupling λ between one H and to L

fields will involve the same exponential suppression factor as WQ. The dangerous

indirect level-repulsion effect on m2 will then be suppressed by the square of this

exponential factor. On the other hand, the direct effect induced on m2 from the

mixing KQ involves both power and exponentially suppressed corrections. Given

then that in these models there is a unique ultraviolet mass scale around MPl, the

indirect effect is a priori smaller than the direct effect, and in all the situations

where the direct effect is neglected also the indirect effect must be discarded. There

is thus no problem in the limit of small quantum effects.

One may finally wonder whether integrating out heavy chiral and vector multi-

plets has similar effects on soft masses in scenarios where both the visible and the

hidden sectors couple to them. In fact, these effects are easily computed, since they

are also encoded in the effective Riemann tensor, but with two visible-sector and

two hidden-sector indices: m2eff

uv̄ = −Reff

uv̄i̄F
ieffF̄ ̄eff. Applying the results (2.39) and

(3.43) one would then find

m2eff

uv̄ = −
(

Ruv̄i̄ +λαui|M |−2αβλ̄β̄v̄̄−2 qauv̄M
−2abqbi̄−2 qau̄M

−2abqbiv̄
)

F iF̄ ̄ . (4.3)

The first term is the usual expression for the soft masses, the second term represents

the correction induced by heavy chiral multiplets, and the third and fourth terms

describe the corrections induced by heavy vector multiplets. The various couplings

controlling these effects are however not always allowed by the Standard Model

gauge symmetry GSM. If the heavy states are neutral, only qauv̄ and qai̄ can be

5See [21, 22, 23] for a more detailed discussion of these effects for gaugino condensation.
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non-zero. The only effect then comes from the third term, with an arbitrary sign.

This is the standard effect induced by a neutral heavy vector multiplet.6 If on the

other hand the heavy states are charged, only λαui and qau̄ can be non-zero. The

only effects then come from the second and the fourth terms, which are respectively

negative and positive. However a charged chiral multiplet cannot have a supersym-

metric mass term, because GSM does not allow holomorphic invariants, whereas a

charged vector multiplet can, since non-holomorphic invariants exist; so actually

only the fourth term is relevant. This is a less-standard but already-known effect

that can be induced by charged vector multiplets.7 In addition to these effects, there

is as usual a separate gravitational effect, which for generic cosmological constant

V = M4

S
− 3m2

3/2
M2

Pl
is given by:

∆m2eff

uv̄ = guv̄

(

m2

3/2
+ VM−2

Pl

)

. (4.4)

We clearly see that eqs. (4.3) and (4.4) for the soft scalar masses correspond to

eqs. (4.1) and (4.2) for the average sGoldstino mass.
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a pleasure to thank M. Gómez-Reino and R. Rattazzi for useful comments and

discussions.

References
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