4,658 research outputs found
Slice Stretching Effects for Maximal Slicing of a Schwarzschild Black Hole
Slice stretching effects such as slice sucking and slice wrapping arise when
foliating the extended Schwarzschild spacetime with maximal slices. For
arbitrary spatial coordinates these effects can be quantified in the context of
boundary conditions where the lapse arises as a linear combination of odd and
even lapse. Favorable boundary conditions are then derived which make the
overall slice stretching occur late in numerical simulations. Allowing the
lapse to become negative, this requirement leads to lapse functions which
approach at late times the odd lapse corresponding to the static Schwarzschild
metric. Demanding in addition that a numerically favorable lapse remains
non-negative, as result the average of odd and even lapse is obtained. At late
times the lapse with zero gradient at the puncture arising for the puncture
evolution is precisely of this form. Finally, analytic arguments are given on
how slice stretching effects can be avoided. Here the excision technique and
the working mechanism of the shift function are studied in detail.Comment: 16 pages, 4 figures, revised version including a study on how slice
stretching can be avoided by using excision and/or shift
Rolling and sliding of a nanorod between two planes: Tribological regimes and control of friction
The motion of a cylindrical crystalline nanoparticle sandwiched between two
crystalline planes, one stationary and the other pulled at a constant velocity
and pressed down by a normal load, is considered theoretically using a planar
model. The results of our model calculations show that, depending on load and
velocity, the nanoparticle can be either rolling or sliding. At sufficiently
high normal loads, several sliding states characterized by different friction
forces can coexist, corresponding to different orientations of the
nanoparticle, and allowing one to have low or high friction at the same pulling
velocity and normal load.Comment: 5 figure
ICT as learning media and research instrument: What eResearch can offer for those who research eLearning?
Students‘ interactions in digital learning environments are distributed over time and space, and many aspects of eLearning phenomenon cannot be investigated using traditional research approaches. At the same time, the possibility to collect digital data about students‘ online interactions and learning opens a range of new opportunities to use ICT as research tool and apply new research approaches. This symposium brings together some of the recent advancements in the area of ICT-enhanced research and aims to discuss future directions for methodological innovation in this area. The session will include four presentations that will explore different directions of ICT use for eLearning research
Dipolar particles in a double-trap confinement: Response to tilting the dipolar orientation
We analyze the microscopic few-body properties of dipolar particles confined
in two parallel quasi-one-dimensional harmonic traps. In particular, we show
that an adiabatic rotation of the dipole orientation about the trap axes can
drive an initially non-localized few-fermion state into a localized state with
strong inter-trap pairing. For an instant, non-adiabatic rotation, however,
localization is inhibited and a highly excited state is reached. This state may
be interpreted as the few-body analog of a super-Tonks-Girardeau state, known
from one-dimensional systems with contact interactions
Nonequilibrium coupled Brownian phase oscillators
A model of globally coupled phase oscillators under equilibrium (driven by
Gaussian white noise) and nonequilibrium (driven by symmetric dichotomic
fluctuations) is studied. For the equilibrium system, the mean-field state
equation takes a simple form and the stability of its solution is examined in
the full space of order parameters. For the nonequilbrium system, various
asymptotic regimes are obtained in a closed analytical form. In a general case,
the corresponding master equations are solved numerically. Moreover, the
Monte-Carlo simulations of the coupled set of Langevin equations of motion is
performed. The phase diagram of the nonequilibrium system is presented. For the
long time limit, we have found four regimes. Three of them can be obtained from
the mean-field theory. One of them, the oscillating regime, cannot be predicted
by the mean-field method and has been detected in the Monte-Carlo numerical
experiments.Comment: 9 pages 8 figure
Self-bound many-body states of quasi-one-dimensional dipolar Fermi gases: Exploiting Bose-Fermi mappings for generalized contact interactions
Using a combination of results from exact mappings and from mean-field theory
we explore the phase diagram of quasi-one-dimensional systems of identical
fermions with attractive dipolar interactions. We demonstrate that at low
density these systems provide a realization of a single-component
one-dimensional Fermi gas with a generalized contact interaction. Using an
exact duality between one-dimensional Fermi and Bose gases, we show that when
the dipole moment is strong enough, bound many-body states exist, and we
calculate the critical coupling strength for the emergence of these states. At
higher densities, the Hartree-Fock approximation is accurate, and by combining
the two approaches we determine the structure of the phase diagram. The
many-body bound states should be accessible in future experiments with
ultracold polar molecules
Phase transitions in optimal unsupervised learning
We determine the optimal performance of learning the orientation of the
symmetry axis of a set of P = alpha N points that are uniformly distributed in
all the directions but one on the N-dimensional sphere. The components along
the symmetry breaking direction, of unitary vector B, are sampled from a
mixture of two gaussians of variable separation and width. The typical optimal
performance is measured through the overlap Ropt=B.J* where J* is the optimal
guess of the symmetry breaking direction. Within this general scenario, the
learning curves Ropt(alpha) may present first order transitions if the clusters
are narrow enough. Close to these transitions, high performance states can be
obtained through the minimization of the corresponding optimal potential,
although these solutions are metastable, and therefore not learnable, within
the usual bayesian scenario.Comment: 9 pages, 8 figures, submitted to PRE, This new version of the paper
contains one new section, Bayesian versus optimal solutions, where we explain
in detail the results supporting our claim that bayesian learning may not be
optimal. Figures 4 of the first submission was difficult to understand. We
replaced it by two new figures (Figs. 4 and 5 in this new version) containing
more detail
Signatures of Wigner Localization in Epitaxially Grown Nanowires
It was predicted by Wigner in 1934 that the electron gas will undergo a
transition to a crystallized state when its density is very low. Whereas
significant progress has been made towards the detection of electronic Wigner
states, their clear and direct experimental verification still remains a
challenge. Here we address signatures of Wigner molecule formation in the
transport properties of InSb nanowire quantum dot systems, where a few
electrons may form localized states depending on the size of the dot (i.e. the
electron density). By a configuration interaction approach combined with an
appropriate transport formalism, we are able to predict the transport
properties of these systems, in excellent agreement with experimental data. We
identify specific signatures of Wigner state formation, such as the strong
suppression of the antiferromagnetic coupling, and are able to detect the onset
of Wigner localization, both experimentally and theoretically, by studying
different dot sizes.Comment: 4 pages, 4 figure
The application of geometrical constructions to the theory of optical interference and diffraction phenomena
- …
