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Self-bound many-body states of quasi-one-dimensional dipolar Fermi gases:
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Using a combination of results from exact mappings and from mean-field theory we explore the phase diagram
of quasi-one-dimensional systems of identical fermions with attractive dipolar interactions. We demonstrate
that at low density these systems provide a realization of a single-component one-dimensional Fermi gas with
a generalized contact interaction. Using an exact duality between one-dimensional Fermi and Bose gases, we
show that when the dipole moment is strong enough, bound many-body states exist, and we calculate the critical
coupling strength for the emergence of these states. At higher densities, the Hartree–Fock approximation is
accurate, and by combining the two approaches we determine the structure of the phase diagram. The many-body
bound states should be accessible in future experiments with ultracold polar molecules.
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I. INTRODUCTION

One of the advances in exactly solvable quantum mechani-
cal models in recent years has been the demonstration that there
is a duality between a single-component one-dimensional (1D)
Fermi gas with short-range “p-wave” interactions and a Bose
gas with a contact interaction [1,2]. This enables one to map
the fermion problem to a boson one, which has been solved
exactly [3,4]. Two-component Fermi gases with a short-range
tunable interaction have been realized with atomic gases and
this has led to fundamental discoveries [5]. However, the
Pauli principle prohibits any significant interaction effects in
a single-component gas of fermionic atoms, which therefore
is essentially noninteracting.

We argue in this article that low-density single-component
quasi-1D systems of fermions with dipolar interactions provide
a realization of a Fermi gas with a generalized contact interac-
tion. Dipolar interactions, particularly those between electric
dipole moments, have a number of important features: they
can be strong, they can be tuned by varying the strength and
direction of an aligning electric field, and they are anisotropic.
As a consequence, dipolar gases exhibit qualitatively new
physics which has been extensively investigated in recent years
[6–8]. Of particular importance are heteronuclear diatomic
molecules, which have appreciable electric dipole moments,
and many groups are currently working on cooling such
molecules to quantum degeneracy [9–12].

Here we focus on quasi-1D systems of single-component
fermions with attractive dipolar interactions that can be real-
ized by aligning dipoles along the length of the system. First,
we show that for low particle densities the dipolar interaction
behaves as a generalized contact interaction. Therefore the
properties of many-body systems can be calculated using the
boson-fermion duality established in Refs. [1,2]. By these
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methods we show that the system has many-body bound
states for a sufficiently strong dipolar interaction. For higher
particle densities, the nonzero range of the interaction must be
taken into account and we calculate properties from mean-field
theory: we thereby delineate the coupling constants for which
self-bound states exist and calculate their density. The density
of these self-bound states is determined by the short-range
length scale of the interaction.

II. EFFECTIVE 1D INTERACTION

We consider a system of dipoles with mass m translationally
invariant in the z direction and confined in the transverse
directions by a harmonic potential with oscillation frequency
ω⊥. For this situation, the effective 1D potential for dipoles
oriented in the z direction and in the lowest energy state of
the transverse motion is obtained by averaging the dipolar
interaction over the ground state of the transverse motion and
is given by [13–15]

V (z) = −d2

l3
⊥

∫ ∞

0
dw w2e−w2/2−w|z|/l⊥ , (1)

with l⊥ = √
h̄/mω⊥ and d2 the strength of the dipolar

interaction, which is given by d2 = D2/(4πε0) in the case
of electric dipoles and by d2 = μ0g

2
Lμ2

B/(4π ) in the case of
magnetic dipoles. Here, D is the electric dipole moment, ε0

is the electric constant, μ0 is the magnetic constant, gL is the
Landé factor, and μB is the Bohr magneton. For |z| � l⊥,
V (z) � −2d2/|z|3, corresponding to the bare dipole interac-
tion, which is attractive since the dipoles are oriented along
the z axis, while for |z| → 0, V (z) → V (0) = −√

π/2d2/l3
⊥,

which is finite. A key point is that the 1/|z|3 behavior means
that the interaction behaves as a short-range potential with a
range ∼l⊥.
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FIG. 1. (Color online) Top: Plot showing the dependence of the
energy E of the lowest two-body state on the strength of the attractive
interaction ldd/l⊥, for two box lengths: L/l⊥ = 400 [dotted (green)
line] and L/l⊥ = 800 [solid (red) line]. To bring out the absence
of binding for ldd < lcrit ≈ 1.44 l⊥ and the expected (ldd − lcrit)2

behavior of the binding energy near threshold, we plot the quantity
−√−E/(h̄ω⊥). The dashed line is a fit of the numerical results to
a linear function ∝ldd − lcrit, and this holds over a wider range of
couplings than might naively be anticipated. The rounding of the
plots for ldd ≈ lcrit is due to the finite size of the box. Bottom: Relative
wave function for ldd/l⊥ = 1.3 (left) and ldd/l⊥ = 1.8 (right) and box
length 200 l⊥.

III. TWO-BODY PROBLEM

To begin with, let us consider the problem of two
identical fermionic dipoles in one dimension interacting via
the potential, (1).1 For identical fermions, the relative wave
function must be odd in z and we have calculated the
energy of the lowest state by solving the 1D Schrödinger
equation numerically. The strength of the dipolar coupling
is conveniently measured in terms of the length ldd = md2/h̄2.
Figure 1 (top) shows the energy of the lowest state of the
relative motion, which is assumed to be confined to boxes of
length 400l⊥ [dotted (green) line] and 800l⊥ [solid (red) line]
as a function of ldd. For ldd > lcrit ≈ 1.44l⊥ there is a bound
state and the leading contribution to the binding energy varies
as (ldd − lcrit)2. The relative wave function for two cases, one
corresponding to a state in the continuum (bottom left) and
the other to a bound state (bottom right), are shown when the
relative motion is confined to a box of length 200l⊥. Both wave
functions change rapidly within the range of the interaction
and comparatively slowly outside. Outside the range of the
potential, but for distances not too close to L/2, the wave
function of a bound state of the relative motion has the form

ψ(z) ∝ sgn(z)e−|z|/ρ, (2)

1The two-boson problem is discussed in Ref. [15].

where z is the relative coordinate and ρ = h̄/
√

mEB , EB being
the binding energy of the bound state.

IV. INSIGHTS FROM EXACTLY SOLVABLE MODELS

To construct the many-body wave function at low density,
we use the fact that the interaction has a short range. When the
particles are outside the range of the interaction, the problem
is then equivalent to that of identical fermions interacting via
a “p-wave” contact interaction [1,2]. This is extremely useful
since we can then use exact results for 1D systems. When
the interaction is sufficiently strong that a bound state for
two fermions exists, the fermionic many-body system with
a p-wave contact interaction can be mapped to a bosonic
one with a usual (s-wave) contact interaction of strength
gB

1D = −2h̄
√

EB/m [1,2]. The exact many-body ground state
of the bosonic system is known [4], and using the mapping of
Refs. [1,2] we obtain the N -body wave function for fermions
in the region outside the range of the interaction, i.e., for
|zi − zj | � l⊥ (for all pairs i,j ), which is given by

ψ ∝
∏
i<j

sgn(zi − zj )e−|zi−zj |/ρ. (3)

The Bose system is self-bound and at the center of mass of the
particles, the 1D particle density is n(0) ∝ N2/ρ [16], which
diverges for N → ∞.

The dipolar system is saved from this collapse in the
thermodynamic limit by the nonzero range ∼l⊥ of the inter-
action, (1). Indeed, the approximation of treating the inter-
action as being of zero range is good only if the separation
between particles is large compared with the range of the
interaction, ∼l⊥. In particular, the wave function, (3), will be a
poor approximation if n � 1/l⊥, and the predicted collapse of
the system to a density ∼N2/ρ is an artifact due to the failure
of the contact interaction assumption.

Nevertheless, it is still possible to demonstrate that there
is a many-body bound state when there is a two-body bound
state. For low densities with a particle spacing much larger
than l⊥, the mapping of the dipolar system onto a Bose gas
with an attractive contact interaction is accurate. From this it
immediately follows that the energy per particle is gB

1Dn/2.
Thus, if gB

1D < 0, i.e., ldd � lcrit, the energy decreases linearly
with increasing density n and there is a many-body bound
state. This linear decrease is shown by the dashed lines in
Fig. 2, where we plot the energy per particle as a function
of the density for various coupling strengths ldd � lcrit. The
low-density state is, in general, not an equilibrium one, since
the energy is not a minimum with respect to variations of
n. With a contact interaction, the system would collapse to
a density of order N2/ρ, but when the short-range behavior
of the potential is taken into account, the equilibrium density
will be set by the short-range scale of the interaction, which is
independent of N in the limit of a large number of particles,
i.e., n ∼ 1/l⊥.

If the dipolar coupling is insufficient to create a two-
body bound state with odd symmetry, the coupling constant
gB

1D in the analogous boson problem is positive, and the
solution of the many-body problem is that obtained by Lieb
and Liniger [3]. For n � mgB

1D/h̄2 the system behaves like
a noninteracting Fermi gas and the energy per particle is
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FIG. 2. (Color online) Many-body ground-state energy per par-
ticle E/N of quasi-1D fermionic dipoles versus density n for
three strengths of the attractive interaction, ldd/l⊥ = 1.44 [thin (red)
lines], ldd/l⊥ = 1.77 [thick (light-blue) lines], and ldd/l⊥ = 1.9 [thick
(black) lines]. Dashed lines depict the low-density limiting behavior
obtained from a mapping to bosons with a contact interaction.
Dash-dotted lines represent the Hartree-Fock approximation, which
is reliable at high densities. Solid curves interpolate between the low-
and the high-density results.

E/N � h̄2π2n2/(6m), while for n � mgB
1D/h̄2 the system

resembles a weakly interacting Bose gas and the energy per
particle is E/N � gB

1Dn/2. The lowest energy state has a
uniform density, and the pressure is positive.2

V. MEAN-FIELD THEORY

When the particle spacing becomes comparable to or less
than the range of the potential, the mean-field approximation,
which in this case is the Hartree-Fock approximation [17,18],
becomes increasingly good. In this approximation, the energy
per particle of a uniform system is given by

E

N
= h̄2k2

F

6m
+ π

2kF

∫ kF

−kF

dk

2π

∫ kF

−kF

dk′

2π
[Ṽ (0) − Ṽ (k − k′)],

(4)

where kF , the Fermi wave number, is related to the density
n by the relation kF = πn and Ṽ (q) is the Fourier transform
of the dipolar interaction, (1). The first term in Eq. (4) is the
kinetic energy, the term involving Ṽ (0) is the Hartree energy,
and the term involving Ṽ (k − k′) is the exchange energy. At
high densities, nl⊥ � ldd/l⊥ the kinetic energy dominates,
followed by the Hartree term, which is negative. The exchange

2The strength of the s-wave contact interaction of the boson
problem, obtained from a fit to the two-body binding energy, is given
by gB

1D = 0.37(1.44 − ldd/l⊥)h̄ω⊥l⊥. The linear dependency of gB
1D

on (lcrit − ldd)/l⊥ is also valid for ldd � lcrit. Therefore, the system
behaves like a noninteracting Fermi gas if n l⊥ � mgB

1Dl⊥/h̄2 =
0.37(1.44 − ldd/l⊥) and like a weakly interacting Bose gas if nl⊥ �
0.37(1.44 − ldd/l⊥). This means that the regime where E/N ∝ (nl⊥)2

becomes smaller, while the regime where E/N ∝ nl⊥ becomes larger,
when ldd/l⊥ approaches lcrit/l⊥ from below.

term is positive and smaller in magnitude than the Hartree term
because it involves nonzero momentum transfers (∼kF ). For
small momentum transfers q, Ṽ (q) ≈ Ṽ (0) + O(q2 ln q), and
therefore at low densities the Hartree and Fock terms cancel to
lowest order. The leading contribution to the interaction energy
per particle is of order n3 ln n and therefore is small compared
with the kinetic energy, which varies as n2. This cancellation
of the Hartree and Fock terms reflects the short-range nature
of the dipolar interaction in one dimension. At intermediate
densities nl⊥ ∼ 1 the interaction energy can be comparable to
or larger in magnitude than the kinetic energy if the dipolar
interaction is sufficiently strong (ldd � l⊥).

An explicit calculation of the interaction energy in Eq. (4)
yields the energy per particle,

E

Nh̄ω⊥
= κ2

F

6
− ldd

πl⊥

{
κF −

[
I (2)

arc (2κF ) − Iln(κF )

4κF

]}
, (5)

with κF = kF l⊥,

I (α)
arc (x) =

∫ ∞

0
dw arctan

(
x

w

)
wαe−w2/2, (6)

and

Iln(x) =
∫ ∞

0
dw ln

(
1 + 4x2

w2

)
w3e−w2/2. (7)

In Fig. 2 we plot the Hartree-Fock energy for a number of
values of the dipolar coupling (dash-dotted lines). This pro-
vides an upper bound on the energy which is accurate for high
densities. We also sketch as solid lines in Fig. 2 the expected
behavior of the energy per particle, which interpolates between
the linear scaling for low density, obtained from the mapping
to exact results for the Bose gas, and the Hartree-Fock result
for high density.

VI. PHASE DIAGRAM

On the basis of the considerations above it is possible
to work out the form of the phase diagram. In Fig. 3,
we sketch the equilibrium density [solid (red) line] as a
function of the dimensionless coupling strength ldd/l⊥ and
the contour for zero total energy [solid (black) line]. From the
exact solutions, we have shown that for ldd > lcrit ≈ 1.44l⊥
a low-density many-body state is bound, and therefore the
contour for zero total energy must meet the coupling-constant
axis for ldd = lcrit. How the zero-energy contour approaches
the axis depends on terms in the energy as a function of
density that are of higher order than the leading one given
by gB

1Dn/2. If they vary as n1+γ , i.e., the energy per particle is
given by gB

1Dn/2 + αn1+γ with α > 0, the equilibrium density
will vary as (ldd − lcrit)1/γ , since gB

1D ∝ (ldd − lcrit) for small
(ldd − lcrit). The pressure of the system is positive above the
equilibrium line. Above the E = 0 line the system will expand
to zero density if it is released, whereas it will oscillate
around the equilibrium density if it is released from a density
below the E = 0 line. We also plot as dash-dotted lines the
zero-energy line and the equilibrium density obtained from
the Hartree-Fock approximation. The interpolations approach
these lines in the high-density limit where Hartree-Fock theory
is reliable. Note that since the Hartree-Fock approximation
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FIG. 3. (Color online) Phase diagram of quasi-1D fermions
with attractive dipolar interactions. The solid (black) E = 0 line
interpolates between the critical point (ldd,n) = (1.44l⊥,0) and the
dash-dotted (black) Hartree-Fock E = 0 line (see text). Above and
to the left of the E = 0 line, matter is unbound and can expand inde-
finitely if not confined. Below the line, matter is bound and unconfined
matter will oscillate about the equilibrium density. The solid (red)
curve is a sketch of the equilibrium density, which again interpolates
between the critical point (ldd,n) = (1.44l⊥,0) and the Hartree-Fock
result [dash-dotted (red) line]. The onset of occupation of the first
excited transverse level is shown by the dotted (black) line.

provides an upper bound on the energy, the exact zero-energy
contour must lie to the left of the Hartree-Fock one.

VII. BOUNDARY OF THE QUASI-1D REGIME

In the calculations above we have assumed that excited
levels of the transverse motion play no role. In the absence of
interactions, the first excited level begins to be populated when
the Fermi energy becomes equal to the excitation energy of the
first excited level, i.e., h̄2k2

F /(2m) = h̄ω⊥ or nl⊥ = √
2/π ≈

0.45. When interactions are included, these criteria will change
and the excited level will begin to be populated when the
energy to add a particle with zero momentum in the z direction
in an excited level is equal to the chemical potential. In Hartree-
Fock theory, this condition is

h̄2k2
F

2m
+

∫ 2kF

0

dk

2π
[Ṽ (0) − Ṽ (k)]

= h̄ω⊥ + 2
∫ kF

0

dk

2π
[Ṽ (0,+,0,+)(0) − Ṽ (0,+,+,0)(k)], (8)

where Ṽ (0,+,0,+) is the Fourier transform of the direct inter-
action and Ṽ (0,+,+,0) is the Fourier transform of the exchange
interaction between two particles, one in the ground state of
the transverse motion and the other in one of the two lowest
excited states (see the Appendix). At low densities, the sum of
the Hartree and Fock contributions to the chemical potential of
particles in the two bands cancels. With increasing density, the
most important effect is the lack of cancellation of the Hartree
and Fock terms for the ground-state band. This is due to the
fact that Ṽ (0) = 2Ṽ (0,+,0,+)(0), that Ṽ (0,+,+,0)(q) depends less
rapidly on q than does Ṽ (q), and that the integral for the excited

state explores momentum transfers only up to kF , while that
for the ground state explores momentum transfers up to 2kF .

An explicit calculation of condition (8) yields

1 − κ2
F

2
+ ldd

πl⊥

[
κF − I (2)

arc (2κF ) + 1

2
I (4)

arc (κF )

]
= 0. (9)

The dotted (black) line in Fig. 3 shows the density at which
the first excited state begins to be occupied in Hartree-Fock
theory. This lies above the value for noninteracting particles
mainly because the Hartree term reduces the chemical potential
of the lowest band. It approaches the noninteracting result
nl⊥ ≈ 0.45 for ldd/l⊥ → 0.

VIII. EXPERIMENTAL CONSIDERATIONS

In future experiments with polar molecules it should be
possible to create self-bound fermionic clusters. Consider,
for example, the case of 23Na40K molecules, which are
particularly interesting since they are chemically nonreactive
[19] and possess a dipole moment of 2.73 Debye (D) [20]
if fully polarized. Partially polarized molecules acquire an
induced electric dipole moment of 1 D in a modest external
electric field (∼10 kV/cm), which corresponds to a dipole
length ldd ≈ 0.94 μm. The regime of self-bound states, ldd �
1.44l⊥, then corresponds to transverse trapping frequencies
ω⊥ � 2π × 377 Hz. Self-bound clusters could be detected
by absorption imaging, since, in the presence of a trapping
potential in the z direction, the size of a cloud of atoms would
decrease very rapidly as the coupling strength passes through
the critical value. Also, when the cloud of atoms is bound, the
cloud will not expand indefinitely when the trapping in the z

direction is turned off.

IX. CONCLUDING REMARKS

In this paper we have explored the phase diagram of a
quasi-1D dipolar Fermi gas with attractive interactions. This
phase diagram, characterized by the appearance of a self-
bound many-body state, has been obtained by a combination
of techniques: exact mappings for 1D systems with contact
interactions, which enables one to pin down properties at
low densities, and mean-field theory, which is reliable at high
densities. Our work shows that dipolar fermionic gases make
possible an experimental realization of generalized contact
interactions under conditions that can be achieved in current
experiments. Our calculations also bring out the important
role played by the transverse extent of the system. A system
with nonzero l⊥ behaves very differently from a purely 1D
system [21], since the singularity in the purely 1D dipolar
interaction is absent and thereby collapse is hindered. A topic
for future work is how virtual excitation of transverse excited
states influences the effective 1D coupling constant. As long as
no real excitations are present in higher transverse levels, the
main effect will be a renormalization of the interaction scale,
since the effective 1D coupling constant will not be equal to ldd.
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APPENDIX: MATRIX ELEMENTS OF THE INTERACTION
FOR PARTICLES IN EXCITED TRANSVERSE LEVELS

The effective 1D matrix elements of the dipole potential
between an initial state with two particles in transverse states
φγ (x,y) and φδ(x,y) and a final state with particles in states
φα(x,y) and φβ(x,y) are given by

V (α,β,γ,δ)(z − z′)

=
∫

d2ρd2ρ ′φ∗
α( �ρ)φγ ( �ρ)φ∗

β( �ρ ′)φδ( �ρ ′)V (�r − �r ′). (A1)

Here, we take the states of the transverse motion to be angular
momentum and energy eigenstates of an axially symmetric
harmonic oscillator. The ground state and the two lowest
excited states are given by

φ0(x,y) = 1√
πl⊥

e−(x2+y2)/(2l2
⊥), (A2)

φ±(x,y) = 1√
πl2

⊥
(x ± iy)e−(x2+y2)/(2l2

⊥), (A3)

and the 3D interaction potential for dipoles oriented along the
z axis is

V (�r) = d2

r3

(
1 − 3z2

r2

)
. (A4)

The matrix elements are best calculated in Fourier (k) space,
and the Fourier transform of the 3D dipolar interaction

potential is given by

Ṽ (�k) = 4πd2

3

(
3k2

z

k2
− 1

)
. (A5)

The effective 1D matrix elements acquire the form

V (α,β,γ,δ)(z) =
[

2d2

3π

∫
d2kρ

˜φ∗
αφγ (−�kρ)˜φ∗

βφδ(�kρ)

]
δ(z)

− d2

2π

∫
d2kρkρ

˜φ∗
αφγ (−�kρ)˜φ∗

βφδ(�kρ)e−kρ |z|,

(A6)

where ˜φ∗
αφβ is the Fourier transform of φ∗

αφβ with respect
to the transverse coordinates. In the text, we use the matrix
elements

V (z) ≡ V (0,0,0,0)(z) = −d2

l3
⊥

∫ ∞

0
dww2e−w2/2−w|z|/l⊥ , (A7)

V (0,+,0,+)(z) = −d2

l3
⊥

∫ ∞

0
dww2

(
1 − w2

4

)
e−w2/2−w|z|/l⊥ ,

(A8)

and

V (0,+,+,0)(z) = − d2

4l3
⊥

∫ ∞

0
dww4e−w2/2−w|x|/l⊥ , (A9)

where we have omitted contact terms, since they play no role
in our calculations due to the cancellation of the direct and
exchange contributions.3

3In contrast, the contact term plays an important role in dipolar
Bose gases [15].
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