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THE APPLICATION OF GEOMETRICAL CONSTRUCTIONS 

TO THE THEORY OF OPTICAL INTERFERENCE 

AND DIFFRACTION PHENOMENA.* 

BY A. L. REIMANN, PHD., D. Sc., F.INST.P. 

Introduction-It is well known that the sum of two simple harmonic 
disturbances, 

s1 = a1 sin (wt + E1)
and s2 = a2 sin (wt + E2) ,
in the same direction and having the same frequency is itself a simple harmonic 
disturbance, 

s = a sin (wt + E),

whose frequency and direction are those of its components, and that the amplitude, 
a, of this resultant 
disturbance may be 
obtained by the 
simple vector con­
struction of Fig. 1. 
If more than the 
two disturbances are 
to be compounded 

a the process is 
· 4 extended, and in-

Fig-. I stead of a vector 
triangle we then have a vector polygon, as shown in Fig. 2. 

Fig. 2 

* Paper read at the Perth meeting of the Australian and New Zealand Association for the 
Advancement of Science, August, 1947. 
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It frequently happens that we wish to 
compound an infinite number of infinitesimal 
disturbances. In such a case our vector polygon 
becomes a smooth curve, as shown in Fig. 3. 
Perhaps the best-known example of such a 
curve is Cornu's spiral. 

Now Cornu's spiral is the particular form 
of construction appropriate to one very special 
class of Fresnel diffraction phenomena. While 
corresponding constructions are, on occasion, 
employed for other cases, it is still somewhat 
unusual to do so. Yet the method is very 
versatile, and lends itself quite simply to the 
solution of a great variety of problems in 
physical optics. It seems that it would surely 

Fig. 3 be profitable to make much more widespread 
use of these constructions than is at present customary. In the present paper 
it is proposed to apply this method to a few selected problems in optics which do 
not appear to have been treated in this manner elsewhere. 

Actual Light Sources-Light sources are never simple, but always contain 
innumerable radiating centres having both a random spatial distribution and a 
random phase distribution. This situation applies to all optical interference and 
diffraction phenomena. Thus if, in Fig. 4, QM and QN represents two rays

Fig. 4 

emanating from some point Q in an " illuminated slit," which ultimately interfere, 
it is obvious that they can do so only by virtue of diffraction at Q of light derived 
from one and the same centre in the source, e.g. , that marked 0. Contributing to
the twG rays QM and QN we must have disturbances coming from all centres such 
as 0 in the light source, the light being diffracted at Q, i. e. , points in the plane of
the slit being the seat of Huygens' secondary wavelets. What will be the most 
probable amplitude of the sum of these secondary wavelets? 

M 

N 
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The existence of this problem was recognized long ago by Rayleigh,* though 
it is often forgotten by modern writers. Rayleigh treated the problem algebraically. 
There is, however, an interesting alternative vector treatment. If we combine all 
the components in any particular plane of polarization of the Huygens secondary 
wavelets emanating from Q which originate from all centres such as 0 by the
geometrical method we shall obtain a very peculiar sort of vector polygon, some 
idea of which is given in Fig. 5. The question resolves itself into this : What will

a 

Fig. 5 

be the most probable magnitude of the resultant of a very large number of vectors 
in the same plane, having some well-defined distribution of magnitudes, but whose 
directions are distributed entirely at random ? 

Now a well-known theorem in probability states that the most probable 
magnitude of the algebraic sum of a number of positive and negative quantities, 
equal in magnitude but having signs distributed at random, is proportional to the 
square root of the number of quantities added. 

This theorem may be extended in two respects. First, the quantities need 
not all be of the same magnitude, provided they conform to some definite law of 
distribution. Secondly, they can be vectors instead of scalars, the components of 
the vectors in some chosen direction then corresponding to the positive and negative 
scalar quantities. The statement of the extended theorem is that the most probable 
magnitude of the resultant of a large number of vectors whose magnitudes are 
distributed according to some definite statistical law and whose directions are 
distributed at random is proportional to the square root of the number of vectors 
compounded. Thus in our optical problem the most probable amplitude of the 
resultant of all the Huygens secondary wavelets sent out simultaneously from Q 

* Lord Rayleigh, "Wave Theory of Light," Encyl. Britt., XXIV., 1888. 
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must be proportional to the square root of the number of radiating centres. The 
resultant intensity is therefore proportional to the number itself, which is as it 
should be according to energy considerations. We may note, incidentally, as a 
matter of interest, that from the same mathematical theorem as that on which 
this conclusion is based we may also infer that in Brownian movement the most 
probable distance a particle will be found from its starting point is proportional 
to the square root of the time. 

The above reasoning concerned itself only with the light diffrci.cted at Q. But 
the observed interference or diffraction fringes are due to the light diffracted at 
all such points as Q. It is easily seen that, as regards intensity, the combined 
effect due to light originating from all centres such as 0 and diffracted at all points
in the slit such as Q will again be proportional to the number of centres. 

Similarly we see that if, instead of having an illuminated slit as light source, 
we used a short, straight and narrow incandescent wire, or a section of capillary 
tube containing a gas through which a discharge is passed, the intensity at any 
point in the interference or diffraction pattern will be proportional to the projected 
area of the source. 

Of course in no actual case do the centres from which the light originates 
continue to radiate indefinitely; they all have finite radiation " lives." Also in 
most cases the centres are not stationary, in consequence of which the radiations 
received from them are not all of exactly the same frequency (Doppler effect). 
We may, however, consider any interval of time which is so short that during it 
no important number of centres has begun or ceased to radiate, and no appreciable 
phase shift between the waves received from different centres has occurred. Then 
the most probable value of the intensity due to all the centres during this interval 
is proportional to their number n, and consequently the mean intensity over a 
long period of time is likewise proportional to n. 

It is interesting to note in this connection that even if all the centres were 
stationary and radiated with strictly the same frequency there would, owing to 
the finiteness of their radiation lives, necessarily be a fluctuation about a mean, 
of both the intensity and the frequency of the resultant Huygens secondary wavelets 
emanating from Q. The fluctuation in frequency follows from the fact that at 
instants of time whose separation is comparable with, or larger than, the mean 
radiation life of a centre, the phases of the resultant disturbances at Q are related 
to one another in an entirely random manner. 

Subsidiary Maxima Produced by a Diffraction Grating-The vector diagram 
appropriate to the problem of a diffraction grating consists of a number of equal 
elements, each inclined at the same angle to its predecessor, the number of elements 
being equal to the number of lines. When the number of lines is large this 
approximates to an arc of a circle of constant length, which curls up more and 
more as the angle of viewing is increased. Main maxima correspond to the special 
cases where this arc is a straight line (radius infinite), i. e., where the angle b�tween 
adjacent elements of the diagram is a whole number of complete revolutions, while 
subsidiary maxima and minima correspond to a curling up of the diagram into 
an odd and even number of half-circles respectively. By consideration of the3e 
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diagrams we easily obtain the angles at which the main and subsidiary maxima 
and the minima between them are produced, and also the relative amplitudes 
( 7T : %- : % : f : . . . . . .  ) and intensities of the maxima. All this has been done
elsewhere, and it is not proposed to repeat it here. However, one problem in this 
field which does not appear to have been dealt with by the geometrical method, 
or even, for that matter, very satisfactorily by the algebraical method, is that of 
the number of subsidiary maxima between two consecutive main maxima. This 
will therefore now be considered. 

The easiest way to find the number of subsidiary maxima is the indirect one 
of finding the number of minima. 

Let the number of lines in the grating be n. Then a necessary condition that 
a vector diagram having n equal elements each inclined at the same angle to its 

predecessor shall close is that a 
fictitious (n + l)th element
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shall be in line with the first,
as indicated in Fig. 6. We
shall have this state of affairs
when the angle turned through
between the first and the
(n + l)th element is a whole­
number multiple of 27T. This 
condition, though necessary, is 
not sufficient, however, for if 
the number in question is a 
multiple of n (the number of 
lines), say mn, so that the 
angle between the first and the 
(n + l)th element is mn.27T, 
then the angle <P between
successive elements is m.27T, 
and the elements will all be
strung out along a straight
line, giving a main maximum­
that of order m. However,
whenever the number of com­
plete revolutions between the 
first and (n + l)th element is

not a multiple of n, the vector diagram will close, givillg a minimum. Thus when 
the number is mn we have the main maximum of order m. When it is (m + l)n
the main maximum of order (m + l)n is forme:i. At all whole-number values
between mn and mn + n we have minima. There are, therefore, n-1 occasions
on which the condition for a minimum will be fulfilled between two successive 
main maxima. And since between each adjacent pair of these minima there is a 
subsidiary maximum, the number of these must be n-2. 

Diffraction by a Circular Apertiire-This is of importance in connection with 
optical instruments. Let us consider first Fraunhofer diffraction, which is involved 
in the theory of the resolving power of a telescope. 
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Fig. 7 

In the case of a rectangular 
aperture or slit of width d 
(see Fig. 7) the appropriate
vector diagram for light 
diffracted in a direction 
making an angle 8 with the
incident light is an arc of a 
circle of constant length, 
and the first minimum will 
occur when this just closes, 
forming one complete circle, 
d sin 8 then being equal to
the wave-length, ,\. 

Now it can be shown, by a rather lengthy and tedious process of integration, 
first carried out by Airy,* that if, instead of a rectangular aperture, we employ a 
circular one of the same diameter, d, the first minimum occurs at a somewhat 
greater angle q,, such that

<P = 1.22 8 . 
The value of the correcting factor, 1.22, which it is necessary to apply for the

case of a circular aperture can be obtained quite simply, with an error not greater 
than about 1 per cent., geometrically. The principle of the method is as follows :

In the case of the rectangle, equal elements of the vector diagram correspond 
to strips of equal width (and therefore area) of the rectangle, as indicated in Fig. 8 . 
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Fig. 8 Fig. 9 

Now if, instead, we consider only those parts of the rectangle contained within 
the circle, we have the same inclination of successive elements of the vector diagram 
to one another as before, but the lengths become progressively less as we approach 
the sides of the circle, so that, for the angle 8 that produces closure for the rectangle,
we have, instead of the closed-circle vector diagram (shown dashed in Fig. 9), one

* G. B. Airy, Cambr. Phil. Trans., 1834, p. 283. 
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' 
' 

1·22 x 2rr' 

that fails to close. To make 
it close we find we have to 
increase the angle from () to </>, 
where </> is equal to 1 .22 (), 
when we obtain the diagram 
shown in Fig. 10. 

The case of the microscope 
is much less simple, and only 
the main. features of the 
problem will be sketched here. 

Let us consider two neigh­
bouring points A and B in the
object viewed (Fig. 1 1 ). It is
required to find under what 
circumstances it will be possible 
to see these as separate. Let 

Fig. io the geometrical images of A 

B' Ii. 
1 ' 
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and B be A' and B' respectively. Then all the optical paths 
from A, through the lens system, to A' will be the same, and 
likewise those from B to B'. A' will be the central maximum of 
the diffraction pattern due to light from A, and B' that due to 
light from B. We shall have to find, then, the condition that A' 
shall lie on the first diffraction minimum of the light from B and 
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B' on that of the light from A. 
To study this condition, let us 

p 
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I 
I 
I 
I IQ 

AB 
Fig. 12 

AB consider rays from B con-
verging, via Huygens' Fig. 11 

secondary wavelets generated at the 
surface of the first lens of the objective, 
to A' (Fig. 1 2) .  Let 0 be the point on
this surface where the axis intersects 
it, while P is some other point. Then 
the problem is to find the condition 
that the resultant amplitude at A' due 
to light from B passing through all 
points such as P is zero. 

We see in the first place that since 
all rays from A to A' have the same 
optical path, and since to a sufficiently 
close approximation AO and BO are
equal, the optical path difference be­
tween rays from B passing through P 
and 0 and ultimately converging in A'
is equal to BP-AP, which in turn is 
equal to AB sin ef>. Since this is a 
function of AB and </> only, we may 
disregard the lens itself except only in 
so far as it sets a limit to <f>. Let 
this limit be denoted by e. 
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The problem, being three-dimensional, is correspondingly somewhat intractable. 
As a first step in its simplification, let us consider a very special case, where 8 is
small, and also let us admit light only through a narrow central strip of the segment 

of a sphere subtended by the lens, as 
indicated in Fig. 13, in a plane con­
taining AB. Then if we cut this strip 
into equal rectangular elements, each of 
these will correspond to an equal 
increment in </> ( = sin </>), and so to an
equal increment in phase. Under these 
circumstances the appropriate vector 
diagram becomes the arc of a circle, 
which will just close, producing a 
minimum at A', if the path difference 
between the two extreme rays is .\, 
i. e., if

2 d sin 8 = .\,

where d is written for AB. 

From this stage it is not difficult to 
Fig. 1 3  extend the reasoning to the actual case 

of a circular aperture, by expanding the elements laterally to the boundaries of 
this aperture. Thus for a circular aperture and 8 small we shall have as the
condition to be fulfilled : 

2 d sin 8 = 1.22 .\.
The factor 1.22 arises, as before, from the fact that the contributions from parts 
for which </> is small relative to 8 ( </> being still the same angle in the plane of the
original strip) are now more important than from parts where it is comparable 
with 8. 

Now in an actual microscope 8 is never small, and we must take account of
the fact that sin </> increases· at a progressively less rapid rate as </> increases, so 
that on this score the areas contributing to equal steps in phase become pro­
gressively larger as we go outwards, and this tendency opposes that which we had 
in passing from a rectangular to a circular aperture, so that for some value of 8 
lying within the practical range the two opposing effects will just cancel each 
other out, and the condition to be fulfilled will be the same as for a narrow strip 
and small 8, viz.,

2 d sin 8 = .\.
This is the equation which is usually taken as valid for all values of 8. It

has, however, been sufficiently demonstrated that in fact it can apply for only 
one particular value. For others it should be replaced by 

2 d sin 8 = f . .\,
where the factor f has the value 1.22 when 8 is small, and has values less than
1 for 8 sufficiently large. The variation of f with 8 can only be found by means
of a much fuller and more systematic investigation than has been attempted here. 
This problem lends itself well to solution by the geometrical method, the condition 
for closure being found for a series of values of 8. Such an investigation, which
it is hoped to undertake shortly, will show that f is not only a function of 8 but
also of the state of polarization of the light used relative to the directio� . 

/ ·: 




